
数式処理 J.JSSAC (1998)

Vol. 6, No. 3, pp. 2 - 29

論文

Formalization and Parsing of Mathematical Expressions

for Mathematical Computatio

Yanjie Zhao Tetsuya Sakurai

Nagasaki Institute of Applied Science University of Tsukuba

Hiroshi Sugiura and Tatsuo Torii∗

Nagoya University
(Received 1997/7/22 Revised 1997/12/17)

Abstract. Mathematical expression parsing is very important particularly for the
human interface of numeric and algebraic computation systems. In this paper, we define
a formalization method and a denotational meaning representation of mathematical ex-
pressions. We create grammars and their parser to translate the formalized mathematical
expressions into their meaning representation. We also develop a meta-language based sys-
tem to realize the notation extension. Thus many complicated context-sensitive notations
can be parsed, and a lot of ambiguities can also be avoided.

1 Introduction

Since the 1960s, many studies on the input and parsing of mathematical expressions

have been made in separate fields: programming languages, document pattern recognition,

document preparation, software specification, numeric and algebraic computation systems.

132 references were listed in [9] and 51 in [20]. In these achievements, there are at least the

following unsolved problems: 1) grammars for whole mathematical expressions are lacking,

2) the existing parsings of mathematical expressions are dependent on their specified front-

end languages, 3) many complicated context-sensitive mathematical notations have not

been parsed, 4) the ambiguity problem has not been avoided, 5) notation extension is still

very difficult, and 6) the high quality display of mathematical expressions during editing

is still lacking.

All existing developments have outgrown their front-end languages to be close to math-

ematical notation. On the contrary, to resolve the problems mentioned above, we have not

designed another similar one, but have started from and focussed on the study of whole

mathematical notation at first, and then, develop various applications in diverse areas.

∗Present address : Nanzan University

c© 1998 Japan Society for Symbolic and Algebraic Computation

J.JSSAC Vol. 6, No. 3, 1998 3

Precisely, we have proposed a box notation system to formalize mathematical expres-

sions [20], have implemented a knowledge-based method to parse the formalized mathe-

matical expressions into a denotational meaning representation, and then into front-end

languages of general purpose computer algebra systems (Mathematica and Maple) to verify

the parsing, and had established two prototypes to input mathematical expressions in a

high quality display [21][13].

After the references listed in [20], there have been new developments: 1) CAS/PI

[6][7][8], a formula editor and a common graphical user interface of concrete computer al-

gebra systems, and its extensibility through writing its inner list representation of grammar

and through plugging software components, 2) MathSpad [3], a 2D formula editor with

a TEX’s METAFONT display and an input connection to Maple, 3) MathProbe [17],

a hyperdocument of a mathematical dictionary which allows retrieval and editing of very

limited 2D formulas and a connection to Maple, 4) Oberon Interface [18], an editor

based on Oberon OS with step-by-step formula conversion between 1D and 2D form for

both documentation and computation by a connection to Maple, 5) OCR input of the

image of published mathematical literature [1], 6) SPEC [12], a system with a simulated

mathematical expression editing for calculating integrals, 7) Scientific WorkPlace [15], a

WYSIWYG document and formula editor with high quality display and a connection with

Maple, 8) GLEFATINF [2], an interface of mathematical inference laboratory ATINF for

combining inference tools, formula editing, and proof checking into one environment, 9)

Mathematica version 3, [14], which has been equipped with a 2D, programmable, and

extensible formula editing interface with high quality display (its fonts are suitable to lower

resolution display), 10) Maple V Release 4 [11], which has an interface of textual parsing

input and a 2D high quality of display, and a hyperlink between its worksheets, and 11)

Developments in Printed Formula Pattern Recognition [4][16][5][10], which have

achieved the recognition of many mathematical expressions. In addition, many projects

are developing based on Internet.

All these new contributions have resolved part of the problems mentioned above, i.e.,

the 1st has been unsolved; the 2nd has been resolved in one way (software bus) in CAS/PI;

the 3rd has been resolved to a certain extent, e.g., in Scientific WorkPlace; the 4th has been

unsolved; the 5th has been resolved to a certain extent, e.g., in CAS/PI and Mathematica

Version 3; the 6th has been greatly resolved in Scientific WorkPlace and Mathematica

Version 3. Compared with these new developments in the world mentioned above, our

research at the same period still has the following independent features and contributions:

1. Establishment of a syntactic structure and a semantic representation of mathematical

notation based on a formalization (to resolve the 1st problem).
2. Definition of a formalization method or a precise model of the structure of mathe-

matical notation to abstract the non-verbal expressions, which is independent of input

4 数式処理 第 6 巻 第 3 号 1998

methods, and moreover, definition of meaning representation to preserve the mean-

ings of mathematical expressions, which is independent of algorithmic definitions and

programming languages (to resolve the 2nd problem).
3. Establishment of powerful grammars to parse much more complicated context-sensitive

notations (to resolve the 3rd problem).
4. Clarification of the necessities for the parsing of many grammars, and moreover, de-

velopment of a knowledge-based parsing method to avoid the ambiguities (to solve the

4th problem).
5. Development of a meta-language to express all the grammars of mathematical nota-

tion and to make the grammars user-oriented, and moreover, design of the notation

extension mechanisms (to resolve the 5th problem).

In this paper, based on our recent work in [22][23], we expound the parsing part of our

research deeper, more completely, and systematically. The input interface of our research

was given in [21][13]. We narrate all the contents in the following sections: the topics about

the formalization in Section 2, the parsing method in Section 3, the meta-language as well

as notation extension in Section 4, and the prototyping in Section 5.

2 Formalization

In order to process mathematical notation on computers, it is necessary to define a

precise model or a formalization method for mathematical notation at first. Through this

model or method, non-verbal mathematical expressions can be abstracted into verbal and

formalized ones. This model is defined as follows.

A formal expression (expression, in short) is a morpheme, or a structure of morphemes.

Every expression occupies one rectangle of space denoted by a box. A morpheme is put

into a box called atomic box. Every box is located in a structure of boxes. The formal

representation (FR for short) is defined in Figure 1 (where “expr” for the short of “ex-

pression”). Formalization means to use boxes to formalize a mathematical expression to

obtain its FR.

In Figure 1, the two kinds of undirected line mean horizontal and vertical concatenates.

The six kinds of directed arrows mean super-script and sub-script subordinate concatenates.

The duet box means the repetition of horizontal or vertical concatenates, or empty. The

dashed box means an optional box. The separated “|” means alternation. A morpheme is

a string of any characters from natural languages and mathematical signs.

The necessities of the formalization can be summarized as follows:

1. FR can be used to express the universal set of the formalized mathematical expressions.
2. FR can be used to abstract any non-verbal symbol into its verbal one. For example,

J.JSSAC Vol. 6, No. 3, 1998 5

expr ::= morpheme expr expr
expr

expr

expr

expr expr expr

expr expr expr

@@I 6 ¡¡µ

¡¡ª ? @@R

Figure 1: Definition of formal representation

fraction strokes being different in length become same formal stroke; open-close sym-

bols, such as |, (, etc, being different in height become same formal one respectively;

square root symbols
√

< expr > being different in both length and style become same

formal one like as [column, ’\sqrt’, <expr>]; etc.
3. FR is an abstract model for expressing the following typesetting tacit agreements

explicitly and normally. No matter what methods one uses, such as pen and paper,

printing, computer hand-written input, computer image scanning input, or computer

key-mouse input, one has to obey the two-dimensional row, column, and tree structures

on a base line. In addition, there are also some rules for line-breaking, page-breaking,

etc, which need another study. All these things have become tacit agreements, called

typesetting tacit agreements. FR is independent of input methods and the media.

It is a fundamental frame for building parsing patterns and input templates of math-

ematical expressions. FR is also independent of typesetting details, such as the font

produced by different makers, font size (e.g., the two x’s in xx are the same), tiny dif-

ferences in location and gap of symbols (e.g., between + and b in a + b versus between

− and b in −b), different space and skip, etc. These typesetting details contribute

nothing to the parsing.
4. FR can be used to express all the following determinable tacit agreements and

indeterminable tacit agreements. To omit symbols, some tacit agreements about

priority and associative rule have been widely accepted. For the example of the prior-

ity, we can find that any factor is at the top priority, such as n!, dxe, | x |, ex, sin x,∫
f(x)dx,

∑n
r=0 f(r), adn

2 e, etc. The second priority is a term, such as a × b, a · b,

x/y, A∩B, etc. The third one is called calculation, such as x + y, x− y, A∪B, −b,

etc. For example, a + b × c means a + (b × c) in the most situations. For the example

of the associative rule, we can find that some operations satisfy both left and right as-

sociative rules, some others only the left associative rule (e.g., a − b − c = (a − b) − c).

6 数式処理 第 6 巻 第 3 号 1998

the correct form: f

@@R
i

¡¡µ
3

the incorrect form: f

@@R
i

¡¡µ
3

Figure 2: The formal representation of f3
i for the meaning (fi)3

These priorities are determinable or definite in a context, in spite of their different

kinds (e.g., logical operators are prior to relation operators in one priority, and poste-

rior to in another), which is called determinable tacit agreements. To omit much

more symbols without causing ambiguities, other tacit agreements concerning priority,

which is called indeterminable tacit agreements, have been accepted to a certain

extent. For example,
∞∑

k=1

ak sin kπs + a often means (
∞∑

k=1

ak sin(kπs)) + a; not means

(
∞∑

k=1

ak)(sin k)πs + a. However, some cases are difficult to determine or are indeter-

minable. For example, what does the expression sin x
√

ax3 + bx2 + cx + d means?

(sin x)
√

ax3 + bx2 + cx + d or sin(x
√

ax3 + bx2 + cx + d)? This may be dependent on

different conventions, contexts, fields, and personal habits. To these two kinds of tacit

agreements, FR can be used to express them explicitly. For example, to parse the

expression a + b × c, we can simply input it as a + b × c . Similarly, sin(n + 1)x can

be input as sin (n + 1)x or sin(n + 1) x. Of course, clear design of a grammar and

elaborate introduction of its grammatical categories can also realize the description of

these tacit agreements in principle. For example, to parse an expression like a + b × c,

we can establish rules like as <calculation> ::= <calculation> + <term> and <term>

::= <term> × <factor> ... However the indeterminable situations are not so explicit.

Nevertheless, in representation of these tacit agreements, the more boxes we use, the

less grammar rules and categories we need; vice verse (see Section 3.4). On the one

hand, the formalization can be naturally manipulated (at least by key-mouse) by

people who know how to construct mathematical expressions on computers, but there

are many boxes, and the FR for a same expression also becomes not unique. On the

other hand, certain grammars may not be accepted widely, and are difficult to modify

and extend.
5. FR can also be used to distinguish some inherent ambiguities. For a simple example,

what does the f3
i mean? (fi)3, (f3)i, or (f3

i) ? Without a context-sensitive restriction,

we can not obtain any answer. However, if f3
i means (fi)3, its FR which is shown in

Figure 2 can avoid this kind of problems. For a typical example, what does the |a|b+c|d|

J.JSSAC Vol. 6, No. 3, 1998 7

a b + c d

Figure 3: The formal representation of |a|b + c|d| for the meaning |a × (|b + c|) × d|

∫
a

b

@@R

¡¡µ

f (x) d x

Figure 4: The formal representation of
∫ b

a
f(x)dx

mean? (|a|×b)+(c×|d|), or |a×(|b+c|)×d| ? This is an inherent ambiguity. However,

if it means |a × (|b + c|) × d|, its FR which is shown in Figure 3 can solve this kind of

problems, and its corresponding printing image
∣∣∣a|b + c|d

∣∣∣ is unambiguous.

6. FR can be used as the meta-notation of a meta-language to describe grammars of

mathematical notation, because Backus-Naur Form (BNF in short) is inconvenient

and even impossible to define the grammars of mathematical notation. BNF can

not explicitly express the column and tree concatenates, some tacit agreements, and

non-verbal symbols, if additional meta-symbols, which are equivalent to FR, are not

introduced.

Therefore, in comparison to the input and parsing of natural languages and program-

ming languages, the formalization is not only necessary, but also as important as the

grammar. A certain formalization and a certain grammar determine a parsing method

(see Section 3.4). From this point of view, enough communication (not only mathematical

symbols, but also some tacit agreements) is necessary for human to manipulate and pro-

cess mathematical notation on computers. Formalization is not a special method to aid

the input and parsing of mathematical expressions. It is widespread and inevitable.

As an example, the FR of
∫ b

a

f(x)dx is shown in Figure 4. It is not a WYSIWYG input

image, but an abstract or inner data representation of the corresponding input image. It

is in fact stored in computers for display and parsing in the following list form:

[row,[tree,’\int’,back_sup,’b’,back_sub,’a’],’f’,’\(’,’x’,’\)’,’{@rm d}’,’x’]

Its WYSIWYG input and editing by key-mouse can been found in [21][13].

3 Parsing Method

8 数式処理 第 6 巻 第 3 号 1998

3.1 Meaning Representation

The meaning of a mathematical expression can at least be dependent on its denotational

interpretation, i.e., a fixed individual, operator or auxiliary symbol has its verbal name or

denotation (a value, constant name, function name, etc.); a variable, self-defined function,

self-defined function call, or polynomial has its declared domain, based on mathematical

knowledge. This kind of interpretation can become a static denotational semantics of

mathematical expressions, and can be expressed by functions with their codomains.

In this research, our goal is only the translation between mathematical expressions and

programs in order to simulate computation meanings of mathematical expressions through

the execution of corresponding programs. Therefore, in a utilitarian stand, this static

denotational semantics is enough. In a theoretic stand, this semantics can be regarded as

an elementary result to approach to the semantics of mathematical notation, which needs

further research.

Thus, we define a textual functional meaning representation, called meta-representation

(MR for short), to describe this kind of static denotational semantics. MR is an object that

contains a function name, its codomain name, and all sub-MR, written in verbal words.

<MR> ::= f(< MR >, ..., < MR >), d | n, d

where f means a function name; d means a domain; n means an individual name.

MR is a symbolic meaning representation of mathematical expressions on computers.

Thus it can be used to express not only computable but also uncomputable meanings. It is

independent of programming languages and algorithms, and can be extended and modified

by the end user in principle. It includes only the name of functions, but does not give

the definitions of functions. It is necessary to translate it into a program written in a

programming language for a further interpretation on computers.

MR is also necessary for the following two reasons: 1) Through the MR and a common

human interface for the common mathematical expressions, it is possible for users to use

more than one front-end language, numerical package, and computer algebra system at the

same environment, because one computational problem may be solved incorrectly, incom-

pletely, or inefficiently in one system or language, but may be solved correctly, completely,

or efficiently in another. 2) Although many real constants can be expressed by symbols in

programming languages, such as π, e,
√

2, sin 1, etc, declarations such as “Let x ∈ R” can

not be completely expressed by any programming language. The mathematical semantics

of a real variable or a real number is very complicated. In current research stage, to avoid

this problem in MR, only a denotational name to the domain of real numbers is given:

set of real numbers. During the parsing, its concrete semantics is unknown. In the next

stage computation on computers, it can be continually interpreted and simulated by a

mathematical computation system.

J.JSSAC Vol. 6, No. 3, 1998 9

3.2 Grammatical Knowledge Representation

All mathematical symbols can be classified into two kinds: 1) fixed mathematical

symbols, i.e., fixed individuals, operators and auxiliary symbols, 2) changeable math-

ematical symbols, i.e., variables, self-defined functions, self-defined function calls, and

polynomials [20].

The meanings and usages of existing fixed mathematical symbols have been formed

historically and have been accepted by the whole world. They are invariant and do not

need declarations to say what they are. However, changeable mathematical symbols

need declarations to say what they are and what domains they belong to, and they may

have different meanings and usages in different contexts.

According to this classification, the fixed mathematical symbols determine the

structure pattern of mathematical expressions. Namely, fixed individuals are terminal

objects which do not need further analysis. Operators connect their operands to create

an operation. Auxiliary symbols are also similar to operators. For example, parentheses,

commas and ellipses can construct a structure, e.g., (a1, a2, · · · , an), where the comma

seems to be a connection operator, the ellipsis means a repetition structure, and finally,

the parentheses wrap them as a whole to distinguish them from other objects.

Therefore, we can express all the grammatical knowledge of both syntax and domain

semantics of mathematical notation in a frame and rewriting rule knowledge representation

below according to the relation between the structure and its meanings of a mathematical

expression [20] (in this paper, the term grammar means both syntax and semantics; the

term parsing means both syntactic analysis and semantic interpretation).

A grammar is mainly composed of a rule base and its background knowledge. The

rule base is constructed by a series of rules. A rule has the following construction (where

a pair of brackets [and] as meta-symbols denote an optional component):
rule{

structure{ <category> → <structure pattern> [action ...] }
meanings{

function{ textual function of meta-representation }
[

domains{ <codomain> ← <domain pattern> [action ...];

<codomain> ← <domain pattern> [action ...];
...

}
]

}
[

meanings{ · · · }

10 数式処理 第 6 巻 第 3 号 1998

]
...

}
Where, <structure pattern>, <codomain>, and <domain pattern> are expressed based

on FR. <structure pattern> and every <domain pattern> have the same structure of

boxes in a rule. Every action is a procedure to perform a certain context-sensitive pro-

cessing (being similar to the actions of augmented transition network grammars [19]). The

whole of structure part corresponds to the syntax. “<category> → <structure pattern>”

is called a structure rule. The → means “can have the form”. “<codomain> ←
<domain pattern>” is called a domain rule. The ← means “is mapped from”. The

function part together with one of < codomain >’s composes a MR.

For example, a rule for pattern
∫ 2

2
2d2 can be described in a meta-language (see

Section 4.1) that is shown as follows (omit all the boxes):

rule{
structure{

< factor > →
∫ <calculation1>

<calculation2>

< term > select{d, d} < atom >

declare symbol{
symbol{< atom >}
derived domain{<calculation2>, <calculation1>}
scope{< term >} } }

meanings{
function{integral(< term >, < atom >, < calculation2 >, < calculation1 >)}
domains{

R ←
∫ R

R

R select{d, d} void

C ←
∫ C

C

C select{d, d} void } }

}
Where the MR within the function part is described and defined in advance as the fol-

lowing:

integral(<expression>, <integral element>, <lower bound>, <upper bound>)

All actions (see Section 4.1) within this rule are briefly introduced as follows: declare symbol{
<action> ...} is used to declare a symbol by its wrapped actions for registration of the

symbol itself, symbol’s domain, codomain, and scope; symbol{<pattern>, ...} is used to

declare a symbol and its usage or call form; derived domain{<category>} is used to de-

note the domain which is derived from the domain of the <category>, and this domain is

J.JSSAC Vol. 6, No. 3, 1998 11

U C R Q Z

R+ Q+ N
® ©ªfinite sets® ©ªreal intervals

- - - -

À

J
JĴ

J
JĴ

J
JĴ- - -

Figure 5: A typical domain inclusion relation

the domain of the declared symbol which is registered by symbol; scope{<category>, ...}
is used to denote that the <category>’s are the scopes of the bound symbol which is reg-

istered by symbol; select{<pattern>, ..., <pattern>} is used to replace itself with one of

the <pattern>’s to dramatically decrease the number of rules; void is used to replace itself

with nothing, to terminate the analysis of current parsing branch.

This kind of rule has the following features: 1) it can be used to express the relation

between structure and meanings effectively, intuitively, and easily understood in order

to realize its extensibility; 2) it can be used to parse context-sensitive notations through

actions, and can keep all the knowledge for parsing a notation into one rule by every means.

3) it can be used to effectively process bound variables and indeterminate symbols through

the actions; 4) it combines a top-down lexical and syntactic analysis, a bottom-up domain

analysis and semantic interpretation, and the context-sensitive processing into one parsing

in principle.

The background knowledge contains two parts: 1) a series of rules for describing

the grammar of domain notations appeared in declarations and definitions, and 2) domain

inclusion relations to dramatically decrease the number of domain rules. A typical domain

inclusion relation has been built and shown in Figure 5.

In Figure 5, every arrow means ⊃, and U means universal set. The “finite sets”, such

as Zn, and the “real intervals”, such as [a, b], can also be used. However it is very difficult

to describe the relation between various finite sets and between various real intervals in a

static knowledge representation, which needs further research in future.

In addition, the knowledge about “∞ ∈ N” has also been built in rule base for parsing

∞. Therefore, a domain name in <domain pattern> becomes the name of any its subset.

However this method requires “small domain matching first”. Thus the order of domain

rules in domains part can not be arbitrary, but has to be dependent on the domain

inclusion relations.

For example, in rule for +, a series of domain rules, such as R ← R + N, R ← R + Q,

R ← R+R, R ← R+Z, etc, are necessary. However, according to the relation in Figure 5,

we can absorb them into one domain rule R ← R + R.

Many compound domains, which are constructed by the fundamental domains shown

12 数式処理 第 6 巻 第 3 号 1998

in Figure 5, such as R × R, Rn×m, Q[x], etc, and their inclusion relations are processed

by actions. These actions declare the whole of compound domain notation, and point

out which part is the fundamental domain in its notation. According to Figure 5, their

inclusion relations can be determined. For example, Nn×m ⊂ Rn×m because N and R are

fundamental domains in 2n×m, and N ⊂ R. Similarly, Q[x] ⊂ R[x] because Q and R are

fundamental domains in 2[x], and Q ⊂ R, etc.

3.3 Parsing Program

All the grammatical knowledge mentioned above has been built into a knowledge base.

We use the knowledge base because the grammar can be modified and extended. The

parser on the knowledge-base performs a top-down lexical and syntactic analysis, and

then, a bottom-up domain analysis and semantic interpretation. We use the top-down

parsing, because we combine the lexical analysis into the syntactic analysis, and because

mathematical expressions often include some unique structures being attached with bound

variables, such as the x within
∫ b

a
f(x)dx and its scope is f(x), which are implicitly declared

beyond their scopes. Other parsing methods should be studied in future. This parsing

program is summarized as follows:

Data Structure is declaration registration tables to register any declared or defined sym-

bol or notation, i.e., to memorize its notations, class (variable, function, polynomial, pa-

rameter, or indeterminate symbol), domain, codomain, parameterized domain, scopes,

assignment state, and its corresponding denotation in MR.

Algorithm is composed of

The input: FR, the output: MR and error message, and the method: as below.

1. If the FR has been declared, return its declared MR.
2. Match the FR with the structure pattern of a rule.

If they are matched,

if there are actions, execute them.

Else, goto 5.
3. Recursively parse all the sub-FRs through all categories in the structure pattern.

If one of them is failed, goto 5.

Obtain all the MRs of the sub-FRs.
4. Match the domains of these MRs with every domain pattern of a meanings.

If they are matched,

if there are actions, execute them;

return the MR: a function and a codomain.

Else,

if there is a next meanings, get it and goto 4.

J.JSSAC Vol. 6, No. 3, 1998 13

3 x y + a +

n

6
Σ
?

k = 1

cos k π

Figure 6: Example of strong formal representation

5. If there is not a succeed rule in the knowledge-base,

return with error message “fail to parse”.

Else, get the next rule from the knowledge-base, goto 2.

3.4 Formalization and Rule Rewriting

To a same expression, its formalization method is not unique, and the grammar is also

not unique. According to the tacit agreements mentioned in Section 2, the formalization

methods and their corresponding grammars can be classified into the following three kinds:

1) Strong formalization requires that every structure or operation has to be wrapped

by a box, i.e., all tacit agreements have to be expressed by boxes. This means that all

determinable and indeterminable tacit agreements are determined by the end user during

input (by input of templates). Therefore, in its corresponding grammar, called strong

grammar, only one grammatical category (e.g., <expression>) is necessary in principle,

and the requirement for the order of rules is weak, e.g., it is unnecessary to put the rule

for + before the rule for ×.

For example, the strong formalization of 3xy + a +
n∑

k=1

cos kπ is shown in Figure 6.

Strong formalization and its strong grammar have the strongest representation

power and are suitable to any area. The grammar can also be extended easily by the end

user. However, an excessive number of boxes are necessary.

2) Weak formalization requires that a portion of boxes in the row structure can

be omitted by introducing grammatical categories into the grammar to describe all de-

terminable tacit agreements. Its corresponding grammar, called weak grammar,

typically contains the following grammatical categories (other similar grammars can also

be created).

1. Sentence: statements and commands, such as declaration, definition, assignment,

substitution, equation solving, etc., which often need words from natural languages

to clarify their structures and meanings.
2. Relation: various relation operations, such as ∈, /∈, ⊂, ⊆, =, 6=, <, ≤, →, ≡, etc.

14 数式処理 第 6 巻 第 3 号 1998

3 x y + a +

n

6
Σ
?

k = 1

cos k π

Figure 7: Example of weak formal representation

3. Calculation: various addition operations, such as binary +, −, ∪, ∨, and unary +,

−, etc.
4. Term: various multiplication operations, such as ×, ·, /, ÷, ∩, ∧, mod, etc. and

implicit multiplication.
5. Factor: all other operations, such as unary operations !, #, ¬, ∂, 2′, ¯, ¨, etc.,

fraction stroke, open-close operations (·), [·], {·}, d·e, b·c, | · |, ‖ · ‖, etc., exponential

operation like as e2, complicated structured operations like
∫ 2

2

2d2,
2∑
2

2, max
2

2,

lim
2

2, matrix, vector, etc., reserved function calls like as sin 2, self-defined function

calls like f(2), a2, etc.
6. Atom: minimal independent mathematical object, which does not contain any opera-

tion within it. It has been declared in a certain way, or does not need a declaration. It

can be a number, constant name (e.g., imaginary unit i, infinity ∞, etc), domain name

(e.g., set of real numbers R), variable name, function name, set name, or indeterminate

symbol. It needs no further analysis and interpretation.

The rules of these grammatical categories can be used to describe the operation priority

and association rules. However, all factors, their operands, and atoms have to be wrapped

by boxes. Moreover, the grammatical categories in a grammar have to be in a determined

order.

The weak formalization of 3xy + a +
n∑

k=1

cos kπ in Figure 7 can be compared to its

strong one in Figure 6.

Because all the factors can be input through the methods template and overlay input by

mouse selection [9][13], weak formalization can be easily input by key-mouse. There is

also a meaningful decrease in the necessary box input. Weak grammar is also not difficult

to extend even by the end user who understands rewriting rule, because it contains only

several easily understood grammatical categories.

3) Free formalization requires that only row, column, and tree structures have to

be put into boxes, i.e., the boxes are necessary only for expressing typesetting tacit

agreements. Thus, this formalization has no restrictions for using boxes within the row

structure. All boxes for determinable and indeterminable tacit agreements can be omitted.

J.JSSAC Vol. 6, No. 3, 1998 15

3 x y + a +

n

6
Σ
?

k = 1

cos k π

Figure 8: Example of free formal representation

Figure 8 shows the free formalization of the same example 3xy + a +
n∑

k=1

cos kπ.

To parse this kind of FRs, we have to manage to clarify or recover the boundaries of

factors, their operands, and atoms in a row structure term. For this purpose, according

to our typical classification for factors, we introduce more grammatical categories besides

those introduced by weak formalization as follows:

1. open-close factor: (·), [·], {·}, d·e, b·c, | · |, ‖ · ‖, etc.
2. defined function call factor: f(x), fn(x), aij , derivative function f ′(x), etc.
3. reserved function call factor: sin x, logn x, tann x, max(x, y), detA, arcsinx, etc.

4. complicated factor:
n∑

i=0

,
∑

0≤i≤n

, max
0≤i≤n

, lim
x→a

,
d

dx
,
∫

r(x)
p(x)dx

q(x)
,
∫ b

a

f(x)dx,
∂3f

∂x2∂y
,

etc.
5. simple factor: (...)′, y′, ẋ, ẍ, xy,

√
x, n

√
x,

x

y
, x̄, etc.

6. unary operator factor: ¬, ∼, #, !, etc.

According to this classification, we can establish the corresponding grammar, called

free grammar. However, one by one use of these rules to try to match so many factors

in a term is a right recursive syntactic analysis, because these factors are often lacking

their boundaries and omitting multiplication signs between them, and most of the operators

appears at the left of their operands (so the corresponding rewriting rule is right recursive

like as the form T → FT). This is inconsistent with the whole left recursive top-down

parsing (for a list, not a string input, because in calculation and term, the computing

order is often left-to-right (so the corresponding rewriting rule is left recursive like as the

form E → E + T , T → TF , etc). Additionally, the parser also performs the context-

sensitive analysis and bottom-up semantic interpretation, thus there have to be many big

back-tracks. To solve the two problems, we use the following two-parsing method only for

the row structure term.

Parsing 1 is a preparatory syntactic analysis to wrap factors of a term by boxes

to obtain a well-formed term and its well-formed factors, which still need to wait for

confirmation in Parsing 2. We introduce the following typical rules of Parsing 1 in the

following order:

16 数式処理 第 6 巻 第 3 号 1998

1. Term is made up of a series of multiplication signs, atoms, and the other factors.
2. Open-close factor may contain a series of open-close operations.
3. Defined function call factor has a structure like 22(...), 2(...), etc.
4. Reserved function call factor may have an operand: a reserved function call factor,

open-close factor, defined function call factor, unary operator factor, simple factor, or

a series of atoms.
5. Complicated factor may have an operand: a complicated factor, or a series of fac-

tors except complicated factors.
6. Unary operator factor may have an operand: an open-close factor or atom for !,

¬, and #, or unary operator factor for ¬ only.
7. Simple factor operands do not have a row structure.

Parsing 2 does lexical and syntactic analysis and semantic interpretation for a well-

formed term and its factors that are the same as of the weak grammar. For example,

to structure 2(...), if it is not a function call declared before, it can be interpreted as a

product.

The rules for Parsing 1 is not unique. We can establish different rules to correspond

quite different tacit agreements or conventions. For example, while one reads the expression
1
2 [1+ sin(n+ 1

2)x

sin 1
2 x

], one readily knows that it means 1
2 [1+ sin((n+ 1

2)x)

sin(1
2 x)

], because the (n+ 1
2) seems

to be a coefficient and there is a similar 1
2 at the denominator. However, this expression will

be mistakenly parsed by the above Parsing 1, because this example is inconsistent with

the convention sin(...). If you prefer the convention of this example, you have to establish

another grammar to permit the operand of sin to contain an open-close factor following an

atom. In short, to express indeterminable tacit agreements, we can establish many

different unambiguous free grammars to make all the desired be determinable in one

grammar.

In addition, the box wrapping an atom can also be omitted in principle, if we introduce

lexical rules and do context-sensitive analysis according to mathematical object declaration

and definition. However, this will mean a very complicated analysis and low efficiency in

parsing. In fact, the string name is seldom used, and the box wrapping an atom is also

easy to input by key-mouse. This problem needs further research with regards to other

input methods.

Free formalization permits users to input a row structure expression (for example,

by keyboard only) without wrapping any box. This is convenient for the input of simple

textual expressions. The use of box can be decreased to the minimum. However, so many

free grammars are difficult and dangerous to extend by the end user. Free grammar

has also the problem of grammatically legal but “unreasonable” operand, which requires

study in future.

No matter what kind of formalization mentioned above, the parser is only one (see

J.JSSAC Vol. 6, No. 3, 1998 17

Section 3.6), and the parsing results have to be the same. For the examples in Figure 6,

Figure 7, and Figure 8, the parsing results are the following same MR, if there are x, y, a ∈
R and n ∈ N in advance (to save space and to read clearly, .set of real numbers is

denoted as R, and .set of natural numbers is denoted as N).

add(add(multiply(multiply(3, N, x, R), R, y, R), R, a, R), R,

sum(cos(multiply(k, N, irrational_number_pi, R), R), R,

k, N, 1, N, n, N), R), R

3.5 Necessities of Many Grammars

The formalizations and corresponding grammars mentioned above are not unique. They

can be combined into a so called many grammars scheme to parse various systems of

mathematical notations. We summarize its necessities as follows.

1. Operator priority causes the problem of different rule orders. For example, logical

operators are prior to relation operators inone grammar, and posterior to in another.
2. Avoidance of ambiguities causes the problem of different rule orders. For example, the

rule for derivative such as f (n) is prior to the rule for exponential function such as an in

one grammar, and random order in another with the agreement that the exponential

part of exponential function can not be wrapped by parentheses.
3. Avoidance of ambiguities causes the problem of different meaning interpretations. For

example, if the parentheses in expression such as (a, b) means complex number and

inner product, and expression such as
(

n
m

)
means binomial coefficient, then the paren-

theses can not be used to express matrix in this grammar. Similar examples can be

found like as sin−1 x, 3 1
2 , etc.

4. The three formalizations cause the problems of the different structure patterns, and

the problem of the number of parsings in different grammars, e.g., the rule for + has to

be prior to the rule for × in weak grammar, but unnecessary in strong grammar;

term in free grammar needs two-parsing.

In short, the many grammars scheme is consistent with the practical situation of

mathematical notation use, because there is more than one mathematical notation system

in use, and each system is internally unambiguous. The existing systems [9][14] have

considered only one grammar, so they could not avoid the ambiguities. However, the

many grammars scheme can avoid a lot of ambiguities.

3.6 Knowledge-Based Parsing System

In order to realize the many grammars scheme to perform more context-sensitive

analyses, and to avoid ambiguities, our former knowledge-based parsing method [20] has

been extended to be a parsing system, which is discussed below.

18 数式処理 第 6 巻 第 3 号 1998

The three kinds of grammars mentioned above, in spite of their common components,

are different each other in structure pattern, number of rules, order of rules, number of pars-

ings, and meaning interpretations. Therefore, we need the same number of knowledge-bases

to implement them. However, to these knowledge-bases, we do not necessarily need the

same number of parsers. In fact, we have developed a knowledge representation language,

called meta-language, to express all these grammars, called understanding grammars.

Through a knowledge base builder, such a grammar can be converted into an understand-

ing knowledge base (being denoted as KU). Thus, we have created only one parser, called

understanding parser, on KU . Through this parser, a FR is translated into a MR, and

then, by a translation parser on translation knowledge bases (being denoted as KT), MR

is translated into a program. The translation from computing result into FR for display

needs only another parser, called reply parser, on reply knowledge bases (being denoted

KR); and the translation from FR to typesetting languages (e.g., TEX) for printing needs

only one parser, called typesetting parser, on typesetting knowledge bases (being denoted

KP). The whole system is shown in Figure 9.

This system has the following features: 1) the input-output interface is independent

of the parsing, and the FR is their interface or protocol; 2) the program translation is

independent of the parsing, and the MR is their interface or protocol; 3) a parser can

correspond more than one knowledge base through meta-language. Therefore, the input-

output, parsing, program execution, typesetting, and knowledge base preparation can be

performed on different machines and in different time.

4 Meta-language and Notation Extension

4.1 Meta-language

A FR based meta-language for representing the grammars of mathematical notation

has been developed, and an example of this language for describing a rule for parsing∫ 2

2
2d2 has been shown in Section 3.2. The meta-language includes 50 meta-statements

and the code for the fundamental signs. All the definition can be found in [24]. The

meta-statements can be divided into the following three classes.

Meta-structures : 9 structures to denote structures of the knowledge representation,

such as rule, structure, meanings, function, domains, etc.
Meta-attributes : 3 attributes to denote attributes of the knowledge representation,

such as the class of the grammar (understanding, translation, reply, and typesetting),

formalization method (strong, weak, and free), and a title to distinguish same kind of

grammars.

J.JSSAC Vol. 6, No. 3, 1998 19

²± °̄mathematical expressions

?

²± °̄grammars in meta-language

?

input interface

2D editor for mathematical notation

?²± °̄inner data representation

?

?

take out

?

knowledge base builder

?

parsing

²± °̄formal representation

??

¶
µ

³
´KU

1 , ..., KU
u

¾understanding parser

?

¶
µ

³
´KP

1 , ..., KP
p

?
typesetting
parser

?

²± °̄meta-representation

?

¶
µ

³
´KT

1 , ..., KT
t

¾translation parser

?²± °̄program

?

²± °̄typesetting representation

?
publishing mathematical computation

?

reply

²± °̄computing result

?

¶
µ

³
´KR

1 , ..., KR
r

¾reply parser

?²± °̄formal representation

?

output interface

restore

?²± °̄inner data representation

?
2D editor for mathematical notation

?²± °̄computing result display

Figure 9: Knowledge-based parsing system based on many grammars scheme

20 数式処理 第 6 巻 第 3 号 1998

actions : 38 actions to denote procedures for context-sensitive processing, and to ex-

press concise representation for decreasing the number of rules and patterns, which are

classified into the following five kinds.

1. Declaration and definition: 18 actions to perform the context-sensitive analysis of

declaration and definition, such as the registration of a declared symbol, its domain,

codomain, assignment state, and scope (examples have been shown in Section 3.2), and

also, the specification of parameter, indeterminate, and argument continual recursive

analysis (examples will be shown in Section 4.3), etc.
2. Condition and relation: 5 actions to perform context-sensitive checks about domain

consistence or inclusion, declaration state of a changeable symbol (e.g., to confirm if

f(2) in f2(2) has been declared as a function call, if not, it is a product (f2)(2);

otherwise it means (f(2))2), and the number of components (e.g., to confirm if a

matrix has the same number of elements in every row).
3. Control structure: 1 action to realize the control structure if-then.
4. Replacement: 12 actions to accomplish meaning replacement for context-sensitive

analysis and decreasing the number of rules. For the example of replacement, it is

necessary to get the row and column sizes of a matrix to know its codomain (matrix

is also regarded as a function); it is also necessary to replace an abnormal or brief

notation like as 2 < 2 ≤ 2 with its equivalent normal one like as (2 < 2) ∧ (2 ≤ 2),

by action reveal; it is convenient to parse a number by an action to avoid the lexical

analysis of a number. For the example of decreasing the number of rules, we introduce

actions repeat, select, and option to describe repetition, selection, and option.
5. Message output: 2 actions to fulfill the feedback of some operands’ interpretation

result in the Parsing 2 of a free grammar, and estimate the “weight” of an operand

to tell the end user if it is somewhat unreasonable, which needs research in future.

4.2 Meta-language Based Parsing

The meta-language can be used to write and modify the grammars, and then, the parser

can parse any input FR according to one of these grammars. Thus we can easily create,

modify, and change grammars without programming.

In order to effectively perform context-sensitive analysis and the two-parsing, to speed

up the parsing, and to save memory, all the rules of grammars are divided into the following

4 kinds: 1) well rule for general rules. 2) reveal rule for the rules that contain action

reveal to replace a brief notation with its equivalent normal one, hence no MR is produced.

For example, it is necessary to replace a brief expression such as a < b ≤ c with its normal

one a < b ∧ b ≤ c before parsing it. Similarly, to replace fn(x) with (f(x))n; to replace∫
dx

f(x) with
∫

1
f(x)dx; etc. 3) trivial rule, and 4) frame rule, i.e., the rule for Parsing 1

in a free grammar.

J.JSSAC Vol. 6, No. 3, 1998 21

The grammatical knowledge representation written in the meta-language is user-oriented,

so it is inefficient in parsing. Thus it is necessary to translate a grammar into a parsing-

oriented knowledge base by a knowledge base builder (see Figure 9), which can accomplish

the following: 1) translation from a grammar in the meta-language into its inner list form,

2) division of the rules into 4 kinds: well, reveal, trivial, and frame, 3) decision of left re-

cursive production in structure to determine a syntactic analysis order, 4) establishment

of a so called category-domains corresponding table for each rule to speed up the domain

pattern matching (to avoid many same pattern matchings), and 5) detection of errors in

grammars.

The parsing program in Section 3.3 will become quite complicated, if we include the

three formalizations, the four kinds of rules, and various actions written in the meta-

language. Its details can be found in [24].

4.3 Self-definition Extension

Notation extensibility is a very important feature of mathematical notation. There are

the following two ways for notation extension: 1) an author defines his own mathematical

notations in a context in the time of need, and 2) an author makes a list of mathematical

notations in front or back of a document. In this research, the first way is implemented in

the method shown in this sub-section; the second way will be studied in Section 4.4.

An operator is often defined for a part of context in a new notation that is different

from the existing popular notations and the former defined notations. Many programming

languages also have the mechanisms of self-definition extension, such as operator defini-

tion and overload, but with very limited textual notations. Thus we give an implementable

method below.

The notation of an operation definition is composed of an operator sign or a structure

of signs, parameter symbols for the operands substitution, and perhaps bound variable

symbols with their bounds. Most of the operation definitions have not bound variables.

This situation is discussed at first.

The operation definition without bound variable is often formally written to be “op def=

...” or “op
4
= ...” etc, where the op is the notation of the defined operation and is composed

of operator structure and parameters. To distinguish the structure from the parameters,

we note that all the parameters have to appear in the right, and have to be declared

formally in the right. Thus the operator structure can be obtained through bringing every

parameter back to be an open place according to every formal declaration of parameters

in the right.

However, it is very difficult to express the distinguishment knowledge mentioned above

in a rewriting rule description. The operation definition expression itself is also context-

sensitive, because the meaning of a parameter is dependent on its declaration in the right.

22 数式処理 第 6 巻 第 3 号 1998

Therefore, we use actions to realize the distinguishment. The rule for “op
def= <expression>,

where <parameter declaration>, ...” (<para dec> for short) is created as follows:

rule{
structure{

<sentence> → any select{ def= ,
4
=} <calculation>,

where <para dec1>repeat{, <para dec2> }
declare symbol{

operation{
any

parameter declaration{ <para dec1> repeat{, <para dec2>} }
parameter scope{<calculation>} }

derived codomain{<calculation>} }
}
meanings{

function{.defined operation(operation,

.parameter declaration(.<para dec1> repeat{, .<para dec2>}),
<calculation>)}

}
}

In this rule, the action any is used to replace itself with the defined operation no-

tation. The action repeat{, <pattern>} is a replacement of “, <pattern>, <pattern>,

...”. This rule is dependent on the rule for <para dec>. Thus we have to use the ac-

tion parameter declaration to perform the information transmission from the rule for

<para dec>. The action declare symbol is used to define an operation. The action

derived codomain is used to obtain the operation’s codomain. The action operation

brings every parameter (obtained from the action parameter declaration) within the

any back to be an open place, in order to form the pattern of the operation notation. And

then, the operation registers the pattern, the codomain, and all the scopes of parameters

into the declaration registration table. Finally, in function part, the operation replaces

itself with the translated textual form of the operation. One of the rules for <para dec>

(will be used in next example) is shown below.

rule{
structure{

< para dec > → <atom> : <domain1> → <domain2>

declare parameter{
symbol{ <atom>, <atom>(any) }
domain{ <domain1> }
codomain{ <domain2> } }

J.JSSAC Vol. 6, No. 3, 1998 23

}
meanings{ function{ .declare function(symbol, .<domain1>, .<domain2>) } }

}
Note that not the declare symbol, but the declare parameter is used to declare

parameters, because the scope of parameters is not the context following the operation

definition, but the scope that is specified by the action parameter scope in operation

in its former rule.

For example, a sentence “< f, g >
def=

∫ 1

0

f(t)g(t)dt, where f : R → R, g : R → R”

can be parsed on the two rules mentioned above. Precisely, any is replaced by < f, g >,

and operation brings it back to be a pattern < , > according to the declarations of f

and g on the rule for <para dec>. Then < , >, its functional domain of the parameters,

and its codomain, which is derived from
∫ 1

0

f(t)g(t)dt, are registered into the declaration

registration table. When an operation call like < u, v > (u and v are functions declared

in advance) is met, the two open places in < , > are substituted by u and v. When an

operation call like < ln sinπx, sin 2πx > is met, i.e., the arguments are expressions, the

unique unassigned x is found and become the argument of the two expressions. Finally, the

MR of this operation definition is produced to be the following (to save space and to read

clearly, .set of real numbers is denoted R, and .set of natural numbers is denoted N):

.defined_operation(

lt__comma__gt(f, g), .parameter_declaration(

.declare_function(.f, .R, .R), .declare_function(.g, .R, .R)),

integral(multiply(f(t, R), R, g(t, R), R), R, t, R, 0, N, 1, N), R)

Where, if there is not a “.” before a function, its codomain follows it; otherwise, its

codomain is ignored for concise representation.

The MR of the operation call < u, v > is shown below:

lt__comma__gt(u, .function_space(.R, .R), v, .function_space(.R, .R)), R

The MR of the operation call < ln sinπx, sin 2πx > is the following:

lt__comma__gt(

ln(sin(multiply(irrational_number_pi, R, x, R),R),R),R, .argument(.x),

sin(multiply(multiply(2, N, irrational_number_pi, R), R, x, R),R), R,

.argument(.x)), R

Similarly, the same rules can also be used to parse other examples, such as “u(x) def= ax,

where x ∈ R”, “‖x‖ def=

√√√√ n∑
i=1

xi
2, where x : Zn → R, via i 7→ xi”, etc.

24 数式処理 第 6 巻 第 3 号 1998

If a defined operation notation has a bound variable, it can not be parsed by the rules

mentioned above. For example,
n⊕

i=m

ai
def=

1
2
am +

n∑
i=m+1

ai, where a : Zn → R, via i 7→ ai.

There is not an explicit declaration of i and its bounds in the right. Which one is the

bound variable in the left? Which one is its bound? How to obtain the pattern
2⊕

2=2

2

corresponding to the left? The bound variable may not appear in the operand. The three

i’s in
⊕

,
∑

, and 7→ are different each other in fact. To gain a clear idea about them,

additional natural language description of the bound variable and its bounds is necessary.

This needs research in future.

There is another problem in use of an operation definition, i.e., the definition sentence

can not specify the knowledge about domain pattern in detail. For example, we create a

rule to parse the operation “2 mod 2”. This rule can include a structure rule “<term>

→ <term> mod <factor>” and several domain rules “N ← N mod N”, “Z ← Z mod

R”, “Q ← Q mod Q”, “R ← R mod R”, and many others for polynomial. If we self-

define it in a context as

x mod y
def=

{
x − ybx/yc, y 6= 0
x, y = 0

where x, y ∈ R ,

only one domain rule “R ← R mod R” is included in fact. Therefore, this prob-

lem becomes that we define an operation in a context if we do not care about the lost

domain patterns, or if the operation needs only one domain rule. In addition, it is very

difficult for end users to extend the rules for operation definition mentioned above. Thus,

these rules had better be in a kernel of a grammar, so that can not be modified (see Section

4.4).

4.4 Grammar Extension

The self-definition extension mentioned above is very flexible and prior to the defini-

tion in grammars. However, it is unthinkable that everything needs self-definition. Similar

to the list of symbols in front of a mathematical book, the parsing knowledge is built into

a grammar in advance. While the end user wants to introduce a new notation for whole

book, and not to define it only for a part of context, he can use the meta-language to

realize the so called grammar extension discussed and designed below.

In principle, the user can append and modify the user-oriented grammars written in the

meta-language. According to the rule construction described in Section 3.2, the end user

can append and modify: rule, domain inclusion relation, name of grammatical categories,

textual function part, fundamental signs, and order of rules. However, the end user

can not append and modify FR and the meta-language, as well as can not destroy the

J.JSSAC Vol. 6, No. 3, 1998 25

domain rules’ order, “small domain matching first”, within every meanings. In practice,

appending and modifying a grammar by end users are very dangerous and may cause

many problems. If these problems are not considered or resolved, end users had better not

be permitted to append and modify any grammar if he is not the grammar’s establisher.

To realize grammar extension, we have considered some dangerous problems and their

countermeasures as follows.

1. After a grammar is extended or modified, more than one same structure pattern

may appear in different rules; same domain pattern may appear in one rule; a gram-

matical category may be undefined; trivial rules may form a synonym repetition; a

fundamental domain may not be included into a domain inclusion relation; domain

rules’ order in a rule may be destroied. To deal with these problems, a checker has

been set up in the knowledge base builder to report these errors.
2. After a grammar is changed, some corresponding modification of the originally related

rules may be forgot; ambiguities may occur; unexpected input may be accepted. These

problems are all undecidable, so they are the end user’s responsibility.
3. The modified function part is inconsistent with the grammar of the corresponding

function in a programming language. This problem can only be found in translation

parsing.
4. After an extension, the original rules and user appended or modified rules are mixed.

It is difficult to perform further maintenance. To solve this problem, a rule index for

extension states is necessary. In this index, any rule is in the state of kernel (can not

be modified), periphery (can be modified), modified, or appended. When errors are

found, the history of extension states will be reported.
5. The end user has to consider at least hundreds of notations, their knowledge rep-

resentations, and their relations, during creating any mathematical notation system.

The complexity of this work is enough to cause many errors. In order to lighten this

burden, to decrease the redundancy of the knowledge, and to manage the knowledge

conveniently, we will establish the following rule library, called multi-grammar.

Although grammars are different each other, most of their rules are still similar. There

are the following three differences between the rules for the same notation in different

grammars: 1) formalizations methods, 2) rules for the two-parsing, and 3) grammatical

categories.

Thus if we classify all the rules in different grammars by formalization methods, and only

use the grammatical categories of MR, we can find that the rules in one formalization are

the same. A rule in a concrete grammar is called active rule. A rule in a formalization

and in use of only the grammatical categories in MR is called inactive rule. All the

inactive rules form three inactive rule libraries according to the three formalization

methods. These rule libraries are called multi-grammars to hint that one can select and

26 数式処理 第 6 巻 第 3 号 1998

rewrite or “activate” rules in one library to build diverse grammars.

For example, we can activate the below inactive rule to form an active rule shown

in the example in Section 3.2, through rewriting the <expression> to be <factor>, every

<integrand> to be <term>, every <upper bound> to be <calculation1>, every <lower bound>

to be <calculation2>, and every <integral element> to be <atom>.

rule{
structure{

< expression > →
∫ <upper bound>

<lower bound>

< integrand > select{d, d} < integral element >

declare symbol{
symbol{< integral element >}
derived domain{<lower bound>, <upper bound>}
scope{< integrand >} }

}
meanings{

function{integral(< integrand >,

< integral element >, < lower bound >, < upper bound >)}
domains{

R ←
∫ R

R

R select{d, d} void

C ←
∫ C

C

C select{d, d} void }

}
}

Multi-grammars can make all rules be produced by the same source, thus the in-

consistency of rules among grammars can be avoided. Additionally, we can also establish

various well-made grammars in advance for user’s selection, which is similar to the manner

of style files of TEX, to make grammar extension easier and safer.

5 Prototyping

To verify this research, two prototypes have been developed. Their two WYSIWYG

human interfaces have basically been implemented in Tcl/Tk [13] and in Prolog [21]. The

parser has been coded in Prolog, and the knowledge base builders in C. Up to the present,

three grammars for the three formalization methods have been established, and each of

them contains more than 200 rules. Their knowledge representation covers notations in

elementary algebra, elementary function, linear algebra, polynomial algebra, set algebra,

logic algebra, calculus, and equation solving. Finally, the parser can translate an input

J.JSSAC Vol. 6, No. 3, 1998 27

FR into MR defined in advance, and then, into a Mathematica or a Maple program. The

pictures of the input interface and computation examples have been given in [13][21][22][23].

All these prototypes have together been named to be nMath.

The structures, the row, column, and tree, in FR are necessarily minimum kinds of

structures. In a practical implementation, in order to decrease the complexity of the

grammar, and to increase the efficiency of the input and parsing, other structures should be

introduced into nMath, such as matrix, fraction, square root, etc, to form an extended

FR.

6 Conclusions

This research has achieved fundamental results of the input and parsing of mathematical

notation for improving the environment of mathematical computation. This research has

focussed on the formalizing and parsing methods of nearly whole mathematical notation.

Through a knowledge-based parsing method, a great portion of traditional modern math-

ematical notations can be parsed on computers. Many ambiguities can be avoided. The

grammars of mathematical notation can be extended by using a meta-language. However,

this research is only the first step to approach the input and parsing of whole mathematical

notation for mathematical computation. There are still many problems mentioned in this

paper need further research, and many valuable applications remain to be developed in

future.

Acknowledgements

We deeply acknowledge Prof. Richard J. Fateman (University of California at Berkeley)

for his inspired discussion and advice about the abstract model and semantics of mathe-

matical notation, as well as his introduction of references and improvement of the paper

writing. We also express grateful thanks to Prof. Yasuyoshi Inagaki (Nagoya University)

for his important advice in the description of some standpoints, the use of some technical

terms, and improvement of the paper writing.

References

[1] Berman, B.P., & Fateman, R.J.: Optical Character Recognition for Typeset Mathe-

matics, Proc. ISSAC’94 (Giesbrecht, M., ed.), ACM, 1994, 348-353.

[2] Caferra, R. & Herment, M.: A Generic Graphic Framework for Combining Inference

Tools and Editing Proofs and Formulae, Journal of Symbolic Computation, 19(1-3),

1995, 217-243.

[3] Chisholm, P.: MathSpad: http://www.win.tue.nl/win/cs/wp/mathspad/, 1993.

28 数式処理 第 6 巻 第 3 号 1998

[4] Grbavec, A. & Blostein, D.: Mathematics Recognition Using Graph Rewriting, Pro-

ceedings of the Third International Conference on Document Analysis and Recognition,

IEEE, 1995, 417-421.

[5] Ha, J., Haralick, R.M., & Phillips, I.T.: Understanding Mathematical Expressions

from Document Images, Proceedings of the Third International Conference on Docu-

ment Analysis and Recognition, IEEE, 1995, 956-959.

[6] Kajler, N.: Building a Computer Algebra Environment by Composition of Collabora-

tive Tools, Proceedings of DISCO’92 (Fitch,J.P. ed.), LNCS Vol.721, Springer-Verlag,

1992.

[7] Kajler, N.: CAS/PI: a Portable and Extensible Interface for Computer Algebra Sys-

tems. Proc. ISSAC’92 (Wang, P., ed.), ACM, 1992, 376-386.

[8] Kajler, N.: Environnement graphique distribué pour le Calcul Formel. Thèse, Docteur

en Sciences, Université de Nice-Sophia Antipolis, Mars 1993.

[9] Kajler,N. & Soiffer,N.,: A Survey of User Interfaces for Computer Algebra Systems,

to appear in Journal of Symbolic Computation, preprint: RIACA Technical Report

#1, Jun.1994.

[10] Lee, H.J., & Wang, J.S.: Design of a Mathematical Expression Recognition System,

Proceedings of the Third International Conference on Document Analysis and Recog-

nition, IEEE, 1995, 1084-1087.

[11] Lee, T.: Maple V Release 4: New Features for Engineers and Scientists, MapleTech,

3(1), 1996, 8-13.

[12] Saito, O., Yamauchi, T., & Takahashi, T.: Widespread User Interface for Computer

Algebra System (in Japanese), Transactions of the Japan Society for Industrial and

Applied Mathematics, 4(4), 1994, 349-357.

[13] Sakurai,T., Zhao,Y., Sugiura,H., & Torii,T.: A User Interface for Natural Mathemat-

ical Notations (in Japanese), Transactions of the Japan Society for Industrial and

Applied Mathematics, 6(1), 1996, 147-157.

[14] Soiffer, N.: Mathematical Typesetting in Mathematica. Levelt,A.(Ed.) Proc. IS-

SAC’95 (Levelt, A., ed.), ACM, 1995, 140-149.

[15] TCI Software Research Inc.: Scientific WorkPlace,

http://www.tcisoft.com/tcisoft.html, 1995.

[16] Twaakyondo, H.M. & Okamoto, M.: Structure Analysis and Recognition of Mathe-

matical Expressions, Proceedings of the Third International Conference on Document

Analysis and Recognition, IEEE, 1995, 430-437.

[17] Watters, C. & Ho, J.: MathProbe: Active Mathematical Dictionary, RIAO’94 Con-

ference Proceedings, New York, Oct.11-13, 1994, 552-569.

J.JSSAC Vol. 6, No. 3, 1998 29

[18] Weck, W.: Putting Icons into (Con-)Text, Proceedings of the Thirteenth International

Conference on Technology of Object-Oriented Languages and Systems, TOOLS EU-

ROPE’94, Versailles, France, 1994.

[19] Winograd, T.: Language as a Cognitive Process, Volume 1: Syntax, Addison-Wesley,

1983.

[20] Zhao,Y., Sugiura,H., Torii,T., & Sakurai,T.: A Knowledge-Based Method for Mathe-

matical Notations Understanding, Transactions of Information Processing Society of

Japan, 35(11), Nov.1994, 2366-2381.

[21] Zhao, Y., Sakurai, T., Sugiura, H., & Torii, T.: Research in Natural Mathematical

Expression Human Interface (in Japanese), The 61st Human Interface Symposium,

Information Processing Society of Japan, SIG Notes, 95(70), 1995, 57-64.

[22] Zhao, Y., Sakurai, T., Sugiura, H., & Torii, T.: A Methodology of Parsing Mathe-

matical Notation for Mathematical Computation. Proc. ISSAC’96 (Lakshman, Y.N.,

ed.), ACM, 1996, 292-300.

[23] Zhao, Y., Sakurai, T., Sugiura, H., & Torii, T.: Notation Extension Methods in Mathe-

matical Notation Parsing for Mathematical Computation. Proc. ASCM’96 (Kobayashi,

H., ed.), Scientists Inc., 1996, 81-91.

[24] Zhao, Y.: Knowledge-Based Parsing Method of Mathematical Notation for Improving

Mathematical Computation Environment, PhD thesis, Nagoya University, Sep. 1996.

	Introduction
	Formalization
	Parsing Method
	Meaning Representation
	Grammatical Knowledge Representation
	Parsing Program
	Formalization and Rule Rewriting
	Necessities of Many Grammars
	Knowledge-Based Parsing System

	Meta-language and Notation Extension
	Meta-language
	Meta-language Based Parsing
	Self-definition Extension
	Grammar Extension

	Prototyping
	Conclusions

