
数式処理 J.JSSAC (1998)

Vol. 6, No. 3, pp. 30 - 46

論文

Univariate Factor Separation and

Separation of Multiple/Close Root Factors∗

Yu-ichi Ozaki†) and Tateaki Sasaki‡)

†)Master’s Program in Science and Engineering
‡)Institute of Mathematics & Venture Business Laboratory

University of Tsukuba

Tsukuba-shi, Ibaraki 305, Japan

(Received 1997/11/4 Revised 1998/5/8)

Abstract

Given univariate polynomials F , G0 and H0 such that F = G0H0 +∆0, ‖∆0‖/‖F‖ =
ε0 ¿ 1, we consider calculating polynomials G1 and H1, such that F = G1H1 +
∆1,‖∆1‖/‖F‖ = ε1 ¿ ε0, where ‖P‖ denotes a norm of a polynomial P . We call this
operation univariate factor separation. We give a quadratically convergent algorithm to
calculate G1 and H1. Furthermore, we derive a condition of convergence of the factor
separation algorithm and discuss the accuracy of factor separated.

We apply the factor separation to separating multiple/close root factors accurately in
two ways. In the first way, we perform the approximate square-free decomposition of F
with low accuracy, obtaining multiple/close root factors crudely, then apply the factor
separation algorithm. In the second way, we solve the equation F (x) = 0 numerically,
obtaining approximate roots among which the multiple/close roots are of low accuracies.
We combine these multiple/close root factors to a polynomial and use it as an initial factor
for the factor separation algorithm.

1 Introduction

Recently, many researchers are getting interested in approximate algebraic computation

with floating-point arithmetic [4, 5, 8] where algebraic operations are treated approximately
∗Work supported in part by Japanese Ministry of Education, Science and Culture under Grants

06558037, 09308008 and Venture Business Laboratory, Univ. of Tsukuba.
Key words: approximate algebraic computation, factor separation of univariate polynomial, multiple/close
root problem

c© 1998 Japan Society for Symbolic and Algebraic Computation

J.JSSAC Vol. 6, No. 3, 1998 31

with small “error terms”. In approximate algebraic computation, both algebraic and nu-

meric algorithms are combined to each other, and the algorithm to be described in this

paper is also of such a kind.

Given a univariate polynomial F (x) and its approximate factors G0(x) and H0(x)

such that F (x) = G0(x)H0(x) + ∆0(x), ‖∆0‖/‖F‖ = ε0 ¿ 1, we consider calculating

polynomials G1(x) and H1(x) such that F (x) = G1(x)H1(x) + ∆1(x), ‖∆1‖/‖F‖ = ε1 ¿
ε0, where ‖P‖ denotes a norm of a polynomial P . We call this operation factor separation

of accuracy ε1. Similar operation is treated in [10], where the authors start from the

rational Hermite interpolation and derive an iteration formula for calculating G1 and H1.

We review the iteration formula in [10]briefly in the text. In this paper, we derive a similar

but different iteration formula from the viewpoint of the Hensel construction.

After defining necessary concepts in 2, we derive a factor separation algorithm in 3.

In 4, we derive a condition of convergence of the algorithm and show that the algorithm

converges quadratically. Furthermore, we show that the accuracies of factors separated

become often much worse than the separation accuracy ε. Factor separation is a simple

and basic operation, hence it will be applied to many kinds of algebraic and numeric

operations. In 5, we propose two methods of applying the factor separation algorithm to

separating multiple/close root factors of a given univariate polynomial accurately. The

proposed methods are experimented by many examples in 6, so as to check the robustness

and effectiveness of the factor separation algorithm and reveal its weak points. These

experiments show that, although numerical accuracy often decreases largely in the process

of factor separation, the algorithm works pretty well so long as we have enough numerical

precision.

2 Notations and definitions

Throughout this paper, F (x), ∆(x), etc. denote univariate polynomials in a variable

x with coefficients in C, the complex numbers. (The symbol ∆ is used to express small

“error terms”.) The coefficients are actually represented by floating-point numbers. Let

F (x) = fλxλ + fλ−1x
λ−1 + · · · + f0, fλ 6= 0. deg(F) and lc(F) denote the degree and

the leading coefficient of F , respectively: deg(F) = λ and lc(F) = fλ. A polynomial F is

called monic if fλ = 1. quo(F,G) and rem(F,G) denote the quotient and the remainder of

F divided by G.

Definition 1

(norm of polynomial) As a norm of a polynomial F , expressed by ‖F‖, we adopt the infinity

norm, i.e., ‖F‖ = max{|fλ|, |fλ−1|, · · · , |f0|}. Furthermore, ‖F‖2 denotes the square norm

of F , i.e., ‖F‖2 = (|fλ|2 + |fλ−1|2 + · · · + |f0|2)1/2.

32 数式処理 第 6 巻 第 3 号 1998

Definition 2

(regular polynomial) A polynomial F (x) is called regular if its roots are on a disc of radius

1 placed at the origin.

Definition 3

(square-free) A polynomial F (x) is called square-free if it has no multiple root factor.

Definition 4

(approximate square-free decomposition) Let ε be a small positive number, 0 < ε ¿ 1. If

a polynomial F (x) is decomposed as

F (x) = Q1(x)Q2
2(x) · · ·Qm

m(x) + ∆(x), ‖∆‖/‖F‖ = ε, (2.1)

where each Qi(x) is square-free, then we call this decomposition approximate square-free

decomposition of accuracy ε.

Remark 1

The norm of a monic regular polynomial F may become pretty large. The most extreme

case is that all the roots are at a point of the unit circle, so ‖F‖ = λCbλ/2c in this case.

However, in most practical cases, ‖F‖ is not much greater than 1.

Remark 2

Let α̂ be a root of F (x) = 0, then

|α̂| < 1 + max{|fλ−1|, |fλ−2|, . . . , |f0|}/|fλ|. (2.2)

Thus, in practical computation, we may adopt the condition ‖F‖/|fλ| ' 1 as an approxi-

mate criterion of regularity.

Remark 3

The polynomial Qi
i(x) in (2.1) is the product of all the i-multiple/close root factors of F (x),

of mutual distance ≤ δ, where δ '
√

ε so long as F (x) is regular and there is no special

relation among its coefficients, see [7].

3 Iteration formula for factor separation

Let F (x) be a given monic regular polynomial which is factored as

F (x) = G(x)H(x), deg(G) = µ, deg(H) = ν, (3.1)

where G and H are also monic. Although the true factors G and H are unknown, suppose

that we have approximate factors Gi and Hi such that{
F (x) = Gi(x)Hi(x) + ∆i(x), ‖∆i‖/‖F‖ ¿ 1,

lc(Gi) = lc(Hi) = 1.
(3.2)

J.JSSAC Vol. 6, No. 3, 1998 33

We assume that Gi and Hi have no mutually close root of mutual distance < δ, 0 < δ ¿ 1.

Now, we derive an iteration formula. Putting

G = Gi + ∆Gi , H = Hi + ∆Hi , (3.3)

and substituting these for G and H in (3.1), we obtain

∆i = F − GiHi = (Gi + ∆Gi)(Hi + ∆Hi) − GiHi

= ∆HiGi + ∆GiHi + ∆Gi∆Hi . (3.4)

Assuming that max{‖∆Gi‖/‖Gi‖, ‖∆Hi‖/‖Hi‖} = εi ¿ 1, we neglect the last term in

(3.4) and determine polynomials ui and vi to satisfy

∆i = uiGi + viHi, deg(ui) < deg(Hi), deg(vi) < deg(Gi). (3.5)

Thus, we determine better approximations Gi+1 and Hi+1 as follows.

Gi+1 = Gi + vi, Hi+1 = Hi + ui. (3.6)

Note that, because of the degree conditions on ui and vi, we have

lc(Gi+1) = lc(Gi) = 1, lc(Hi+1) = lc(Hi) = 1.

The corrections ui and vi are calculated as follows. Since Gi and Hi are relatively prime

by the assumption, the extended Euclidean algorithm allows us to calculate polynomials

A and B satisfying {
AGi + BHi = 1,

deg(A) < deg(Hi), deg(B) < deg(Gi).
(3.7)

Dividing ∆iA and ∆iB by Hi and Gi, respectively, we calculate ui and vi as{
∆iA = QAHi + ui, ui = rem(∆iA, Hi),

∆iB = QBGi + vi, vi = rem(∆iB, Gi).
(3.8)

We can show that ui and vi in (3.8) satisfy (3.5) as follows. Multiplying ∆i to the first

equality in (3.7) and using decompositions in (3.8), we have

∆i = ∆i ·(AGi + BHi)

= uiGi + viHi + (QA + QB)GiHi.

Since deg(∆i) < deg(GiHi), we see QA + QB = 0 and we obtain (3.5).

The factor separation is done as follows. We first determine initial approximate factors

G0(x) and H0(x) suitably and set the required separation accuracy εc. Then, we apply

iteration formula (3.6) with (3.7) and (3.8) to G0(x) and H0(x). If we have Gi(x) and

34 数式処理 第 6 巻 第 3 号 1998

Hi(x) such that ‖∆i‖/‖F‖ = ε < εc then we stop the procedure. We distinguish εc from

ε, by calling it as cutoff separation accuracy.

Now, we briefly mention on [10]in which the authors want to determine a factor X of a

polynomial F by giving an approximate factor X0 such that F = Q0X0 +∆0, ‖∆0‖/‖F‖ =

ε0 ¿ 1. They first determine Q0 and ∆0 as Q0 = quo(F,X0) and ∆0 = rem(F,X0). Then,

they calculate polynomials Q1 and X1 satisfying X1Q0 + Q1X0 = ∆0. (They propose

to use the Chinese remainder algorithm, instead of the extended Euclidean algorithm, to

calculate Q1 and X1.) With Q1 and X1 as initial polynomials, they iteratively calculate

Qi and Xi (i = 2, 3, . . .), satisfying Xi(Q0 + Qi−1) + QiX0 = ∆0. Then, Xi converges to

X quadratically, so long as ε0 ¿ 1. Note that, in this formula, deg(Xi) > deg(∆0) and X0

and ∆0 are not updated.

4 Analysis of convergence property

Let (P3, P4, · · · , Pki) be a polynomial remainder sequence generated by P1 = Gi and

P2 = Hi. Since Gi and Hi are relatively prime, we assume that Pki = constant (6=
0). The extended Euclidean algorithm calculates the sequences (A3, A4, · · · , Aki) and

(B3, B4, · · · , Bki) such that{
AjGi + BjHi = Pj , j = 3, 4, · · · , ki,

deg(Aj) < deg(Hi) − deg(Pj), deg(Bj) < deg(Gi) − deg(Pj).
(4.1)

We assume that each Pj (3 ≤ j ≤ ki) is normalized as

max{‖Aj‖, ‖Bj‖} = 1. (4.2)

Remark 4

According to the analysis in [7, 9],|Pki | becomes very small if Gi and Hi have mutually

close roots; if they have m mutually close roots of mutual distance ≤ δ then |Pki | becomes

less than about δ2m−1. Even if Gi and Hi have no mutually close root, |Pki | may become

considerably small if deg(F) is large; |Pki | is proportional to the resultant of Gi and

Hi and we have resultant(Gi,Hi) =
∏

m

∏
n (αm − βn), where Gi =

∏
m (x − αm) and

Hi =
∏

n (x − βn).

Let (∆Gi , ∆Hi) and (ui, vi) be defined as in (3.3) and (3.5), respectively. Equalities in

(3.4) and (3.5) give us

∆HiGi + ∆GiHi + ∆Gi∆Hi = uiGi + viHi.

Using (3.3) and Gi+1 and Hi+1 in (3.6), we can rewrite this equality as follows.

− ∆Gi∆Hi = (∆Hi − ui)Gi + (∆Gi − vi)Hi

J.JSSAC Vol. 6, No. 3, 1998 35

= (H − Hi+1)Gi + (G − Gi+1)Hi

= ∆Hi+1Gi + ∆Gi+1Hi. (4.3)

On the other hand, the first relation in (4.1) with j = ki gives

1 = (AkiGi + BkiHi)/Pki .

Multiplying −∆Gi
∆Hi

to this equality, we obtain

− ∆Gi∆Hi = −(∆Gi∆HiAki/Pki)Gi − (∆Gi∆HiBki/Pki)Hi. (4.4)

We note that ∆Gi+1 and ∆Hi+1 satisfying (4.3) exist and are unique if we impose conditions

deg(∆Hi+1) < deg(Hi) and deg(∆Gi+1) < deg(Gi). Hence, from (4.3) and (4.4), we find{
∆Gi+1 = −rem(∆Gi∆HiBki , Gi)/Pki ,

∆Hi+1 = −rem(∆Gi∆HiAki , Hi)/Pki .
(4.5)

4.1 Condition of convergence

Equations in (4.5) allow us to bound ‖∆Gi+1‖ and ‖∆Hi+1‖ in terms of the product of

‖∆Gi‖, ‖∆Hi‖ and C/|Pki |, where C is a number which bounds the increasing ratio of the

coefficients in the products and remainder computations in (4.5). That is, we put

max{‖∆Gi+1‖, ‖∆Hi+1‖} ≤ C ‖∆Gi‖·‖∆Hi‖/|Pki |,

(an upper-bound of C is determined below).
(4.6)

¿From (4.6), we have ‖∆Gi+1‖/‖∆Gi‖ ≤ C‖∆Hi‖/|Pki | and ‖∆Hi+1‖/‖∆Hi‖ ≤ C‖∆Gi‖/|Pki |.
The iteration will converge only when we have ‖∆Gi+1‖/‖∆Gi‖ < 1 and ‖∆Hi+1‖/‖∆Hi‖ <

1. Therefore, the convergence condition for our iteration procedure is that the following

inequalities are satisfied for each i.

‖∆Gi‖ < |Pki |/C and ‖∆Hi‖ < |Pki |/C . (4.7)

Now, we determine an upper-bound of C.

Lemma 5

Let univariate polynomials P (x) and Q(x) be represented as{
P (x) = pmxm + pm−1x

m−1 + · · · + p0,

Q(x) = qnxn + qn−1x
n−1 + · · · + q0, n ≤ m.

(4.8)

Then, the norm of the remainder rem(P,Q) is bounded as follows.

‖rem(P,Q)‖ ≤
∣∣D/qm−n+1

n

∣∣ , (4.9)

D2 =
n

max
i=1

{
(p2

m + · · · + p2
n + p2

n−i) ·
∏m−n

j=0 (q2
n + · · · + q2

n−j + q2
n−j−i)

}
. (4.10)

36 数式処理 第 6 巻 第 3 号 1998

Proof The remainder can be expressed by determinants as follows, see [1].(The dashed

line in the matrix below is to show that the determinant is an augmented one.)

qm−n+1
n rem(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣∣

qn · · · q2n−m | xn−1q2n−m−1 · · ·
. . .

... |
...

. . .

qn | xn−1qn−1 · · · x0q0

pm · · · pn | xn−1pn−1 · · · x0p0

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.11)

Here, the augmented determinant denotes the sum of n determinants each of which is

constructed by attaching one of the right n columns to the left m−n+1 columns. Applying

Hadamard’s inequality to the above determinants, we obtain the lemma.

Proposition 6

The number C in (4.6) is bounded as follows.

C <
√

λ min{µ, ν} max{µ‖Gi‖λ−2
2 , ν‖Hi‖λ−2

2 }. (4.12)

Proof Noting that deg(∆Gi) < deg(Gi) = µ, deg(∆Hi) < deg(Hi) = ν, µ + ν = λ,

and normalization of Aki and Bki , we see

deg(∆Gi∆HiBki) ≤ λ + µ − 3, ‖∆Gi∆HiBki‖ ≤ ‖∆Gi‖ ‖∆Hi‖ min{µ, ν}µ,

deg(∆Gi∆HiAki) ≤ λ + ν − 3, ‖∆Gi∆HiAki‖ ≤ ‖∆Gi‖ ‖∆Hi‖ min{µ, ν}ν.

Substituting ∆Gi∆HiBki and Gi, and ∆Gi∆HiAki and Hi for P and Q in Lemma 1, and

bounding the p-factor and q-factor in (3.10) as

(p2
m + · · · + p2

n + p2
n−i) ≤ (m − n + 2) ‖P‖2,

(q2
n + · · · + q2

n−j + q2
n−j−i) ≤ (q2

n + · · · + q2
n−j + · · · + q2

0),

we obtain the upper-bound in (4.12).

Remark 5

The above upper-bound of C is too large an over-estimation. However, if max{‖Gi‖2, ‖Hi‖2} À
1 then C becomes inevitably large, although the dependence of C on ‖Gi‖2 and ‖Hi‖2 is

not so strong actually.

When max{‖Gi‖, ‖Hi‖} À 1, we can apply a transformation x → cx, c > 1, making Gi

and Hi satisfy max{‖Gi‖, ‖Hi‖} = 1. Then, C will not depend on Gi and Hi so strongly.

However, in this case, |Pki | is made small by this transformation.

4.2 Order of convergence

Next, let us consider the convergence order. As usual, we consider only the local

convergence and not the global convergence, which means that Gi and Hi are assumed to

be enough close to G and H, respectively.

J.JSSAC Vol. 6, No. 3, 1998 37

Similarly to (4.1) and (4.2), we have polynomials A′, B′ and P ′
k (=constant) such that{

A′G + B′H = P ′
k, max{‖A′‖, ‖B′‖} = 1,

deg(A′) < deg(H), deg(B′) < deg(G).
(4.13)

Since we are discussing the local convergence, we can assume that |Pki | ' |P ′
k|. Then, (4.6)

gives us the following inequality.

max{‖∆Gi+1‖, ‖∆Hi+1‖}
max{‖∆Gi‖, ‖∆Hi‖}2

≤ C‖∆Gi‖·‖∆Hi‖/|Pki |
max{‖∆Gi‖, ‖∆Hi‖}2

≤ C

|Pki |
' C

|P ′
k|

. (4.14)

Therefore, the above iteration converges quadratically.

4.3 Accuracy of factor separated

According to (3.3), the accuracies of Gi and Hi are given by ‖∆Gi‖/‖Gi‖ and ‖∆Hi‖/‖Hi‖,
respectively, which are nearly equal to ‖vi‖/‖Gi‖ and ‖ui‖/‖Hi‖.

It should be emphasized that the accuracy of a separated factor Gi is not the same

as the separation accuracy ‖∆i‖/‖F‖ but the former is often much larger than the latter.

Comparing (3.7) and (4.1), and noting the normalization in (4.2), we see

A = Aki
/|Pki

|, B = Bki
/|Pki

|. (4.15)

Substituting the right-hand side expressions for A and B in (3.8), we find that{
ui = rem(∆iAki ,Hi)/|Pki |,

vi = rem(∆iBki , Gi)/|Pki |.
(4.16)

Proposition 7

The norms ‖ui‖ and ‖vi‖ are bounded as

max{‖ui‖, ‖vi‖} <
√

λ max{µ‖Gi‖λ−1
2 , ν‖Hi‖λ−1

2 } ‖∆i‖
|Pki |

. (4.17)

Proof Applying Lemma 1 to the remainders in (4.16), and performing a similar eval-

uation as in Prop. 1, we obtain the proposition.

Although the above upper-bound in Prop. 2 is too large an over-estimation, the equations

in (4.16) show clearly that ‖ui‖ and ‖vi‖ become larger than ‖∆i‖ by at least about a

factor of 1/|Pki |. Hence, if Gi and Hi have mutually close roots then accuracies of Gi

and Hi are worse than the separation accuracy ‖∆i‖ by a factor of about |Pki |. We will

convince ourselves of this by examples below.

38 数式処理 第 6 巻 第 3 号 1998

5 Separation of multiple/close root factors

If we solve a univariate algebraic equation numerically, we can calculate single roots to

accuracy about εM , with εM the machine epsilon, while m multiple roots can be calculated

only to accuracy about m
√

εM and accuracy of close roots also decreases largely, which we

call the multiple/close root problem. This problem is inevitable so long as we employ

floating-point arithmetic. The reason is as follows. Let F (x) have m multiple roots at

x = r, hence F (x) = (x − r)mQ(x). Then, for a number δ s.t. |δ| ≤ m
√

εM , we have

F (r + δ) = δmQ(r + δ), which means that all the numerical accuracy is lost during the

evaluation of F (r + δ). Since the evaluation of F (x) at x ' r is necessary for the root

computation, m multiple roots cannot be calculated more accurately than about m
√

εM .

Next, let F (x) have m close roots around x = r, hence F (x) = (x − r − δ1) · · · (x −
r − δm)Q(x), with |δi| ≤ δ̄ (i = 1, . . . ,m). Then, for a number δ s.t. |δ| ≤ δ̄, we have

|F (r + δ)| = |(δ − δ1) · · · (δ − δm)Q(r + δ)| ≤ 2mδ̄m|Q(r + δ)|. This means that, in the

δ̄-neighborhood of x = r, the numerical accuracy is lost to about δ̄m in the evaluation

of F (r + δ), hence the close roots of mutual distance about δ̄ can be calculated only to

accuracy about εM/δ̄m.

One practical method to attack the multiple/close root problem is to separate a factor

G(x) accurately which contains all the multiple/close roots around x = r and no other

root, then we may solve G(x) = 0 by a suitable method (for example, by moving the

origin to x ' r and scaling up the x-axis). We apply the factor separation algorithm to

determining G(x) accurately. Only one problem in this application is how to determine

the initial factors G0(x) and H0(x), and we give two methods to determine them below.

5.1 Using approximate square-free decomposition

Applying the approximate square-free decomposition algorithm to F (x), we can calcu-

late polynomials Q1(x), Q2(x), . . . , Ql(x) such that

F (x) = Q1(x)Q2
2(x) · · ·Ql

l(x) + ∆(x), ‖∆‖/‖F‖ = ε ¿ 1. (5.1)

Suppose F (x) contains close roots of mutual distance δ, 0 < δ ¿ 1. Since F (x) is regular,

all the close roots of mutual distance less than about
√

ε are treated as approximate

multiple roots in (5.1), see [7].Hence, each Qi(x) has no close root of mutual distance less

than about
√

ε. Let deg(Qi) = mi and ri,j (j = 1, . . . ,mi) be the roots of Qi(x). Then,

we choose the initial factors G0(x) and H0(x) as follows.

G0(x) = (x − ri,j)i, H0(x) = quo(F (x), G0(x)). (5.2)

G0(x) corresponds to all the multiple/close roots around x = ri,j . Furthermore, G0(x) and

H0(x) have no mutually close root of mutual distance less than about
√

ε.

J.JSSAC Vol. 6, No. 3, 1998 39

numerical roots error bounds

r1 = 1.0 + 6.9892417174226i × 10−26 4.5687730195968 × 10−17

r2 = 0.49999999943258 − 0.0000000024690493548955i 0.000000068625370507708
r3 = 0.49999999768121 + 0.0000000013138319584329i 0.00000005881663943024
r4 = 0.2 + 1.8772219940818i × 10−24 1.36161454799 × 10−16

r5 = 0.09999909626683 − 0.00000042006060745357i 0.0000079238384679933
r6 = 0.100000812092505 − 0.00000057737865711055i 0.0000088086156664535
r7 = 0.100000111696375 + 0.00000100099111736021i 0.0000069488669111646
r8 = −0.1 − 3.4117107627346i × 10−25 4.9513242866064 × 10−17

r9 = −0.3 + 1.2721150119997i × 10−24 3.6927706438334 × 10−16

r10 = −0.6 + 2.6459097352384i × 10−23 1.3442407502748 × 10−14

r11 = −0.7 + 1.2489317923373i × 10−23 7.2517218753707 × 10−15

r12 = −1.0 − 1.260411171906i × 10−24 1.00631954131092 × 10−15

Table I: Numerical roots and their error bounds for the polynomial in Example 1.

5.2 Using Smith’s error bound

As for the errors of approximate solutions of a univariate polynomial equation, Smith’s

error bound [6]is well-known and quite useful. Let ri be an approximate solution to the

i-th root of F (x) = 0 and δri be the correction to ri in the Durand-Kerner quadratic

method [2, 3],or D-K method in short, then, speaking roughly, the error bound for ri is

deg(F)×|δri |. Therefore, when the D-K method converges, we can decide definitely whether

or not a given approximate solution corresponds to a multiple/close root, by observing the

value of Smith’s error bound.

Example 1

Computation of roots of the following F (x) by the D-K method.

F (x) = (x − 1)(x − 0.5)2(x − 0.2)(x − 0.1)3(x + 0.1)(x + 0.3)(x + 0.6)(x + 0.7)(x + 1)

The numbers in Table I are approximate roots computed with double-precision floating-

point arithmetic and corresponding Smith’s error bounds. Noting that εM ' 2.2 ×
10−16,

√
εM ' 1.5 × 10−8 and 3

√
εM ' 6 × 10−6, we see from Table I definitely that

r2 and r3 are double roots, r5, r6 and r7 are triple roots, and others are single roots.

Furthermore, we see that r10 and r11 are mutually close roots of mutual distance '
1/

√
7.25 × 10−15/2.2 × 10−16 ' 0.17, because the accuracies of two close roots of mutual

distance δ̄ are about εM/δ̄2.

Following the above arguments, we choose G0(x) to be the product of factors (x − ri)’s,

where ri ranges over all the roots for which Smith’s error bounds are much greater than

40 数式処理 第 6 巻 第 3 号 1998

εM .

6 Experiments

We have mainly the following three worries about the methods proposed above. 1)

Robustness: do the methods work for not only polynomials whose roots are well clustered

but also polynomials whose roots are not well clustered? 2) Effectiveness: are the separated

factors enough accurate? 3) How much cancellation errors occur during the computation?

In order to check the robustness and effectiveness of the factor separation algorithm and

reveal its weak points, we made the following two kinds of experiments.

In the first experiment, we generate 1000 polynomials of degree 15 by distributing their

roots randomly in the real interval [−1, 1], and apply the factor separation algorithm with

initial factors determined by the approximate square-free decomposition with appropriate

decomposition accuracy, as described in 5.1. Since the average distance between two

neighboring roots is d̄ = 2/(deg(F) + 1), we set the cutoff decomposition accuracy εc as

εc = (0.5d̄)2 ' 0.0039 so that all the roots of mutual distance less than 0.5d̄ are treated as

close roots. Since the roots are distributed randomly, it is not always easy to distinguish

some roots as close roots from others, hence this experiment is suited for checking the

robustness of the algorithm. Furthermore, as we will see below, we can also check the

effectiveness and reveal a weak point of the algorithm. We also generate 100 polynomials

of degree 30 by distributing their roots randomly inside a unit disc, and perform a similar

experiment.

In the second experiment, we give 20 polynomials of degree 12 generated artificially so

that they have multiple and/or close roots, and apply the factor separation algorithm with

initial factors determined by using Smith’s error bounds of the roots computed numerically,

as described in 5.2. The purpose of this experiment is to show the effectiveness of the factor

separation algorithm for the multiple/close root problem.

We explain two typical examples for the first kind of experiment.

Example 2

Factor separation using approximate square-free decomposition.

Let F (x) = (x − r1)(x − r2) · · · (x − r15), where

r1 = 0.906978, r6 = 0.075609, r11 = −0.517318,
r2 = 0.738607, r7 = −0.091147, r12 = −0.552766,
r3 = 0.640075, r8 = −0.332034, r13 = −0.784881,
r4 = 0.506494, r9 = −0.335729, r14 = −0.92664,
r5 = 0.232769, r10 = −0.346839, r15 = −0.97263.

(6.1)

Approximate square-free decomposition of F (x), with cutoff decomposition accuracy εc '

J.JSSAC Vol. 6, No. 3, 1998 41

0.0039, gives us F (x) ' Q1(x)Q3
3(x) + ∆(x), ‖∆‖ = 0.000180 · · ·, where

Q3 = x + 0.3433117570824,

Q1 = x12 + 0.72951672875281x11 − 2.2768896449443x10 − 1.4745190326655x9

+ 1.9526688106761x8 + 1.0520800448672x7 − 0.78593426196072x6

− 0.31528372577108x5 + 0.14746174585131x4 + 0.03444041818503x3

− 0.0104776477942184x2 − 0.00030686537793658x + 0.000050067094332961.

Since Q3 is of degree 1, we need not calculate its root, and we put G0(x) and H0(x) as

follows.

G0 = Q3
3, H0 = quo(F,G0).

With these initial factors, the factor separation algorithm of cutoff separation accuracy

10−13 converges at the fifth iteration, and we obtain

G5 = x3 + 1.014602x2 + 0.34307969394299x + 0.038663337422453,

H5 = x12 + 0.74485000000001x11 − 2.270831553243x10 + · · · .

Since G0(x) corresponds to roots r8, r9 and r10, we check the accuracy of G5(x) as follows.

‖G5 − (x − r8)(x − r9)(x − r10)‖ = 9.992 · · · × 10−15.

We see that the factor corresponding to these close roots is separated accurately.

Example 3

The case in which a separated factor is not so accurate.

Let F (x) = (x − r1)(x − r2) · · · (x − r15), where

r1 = 0.580397, r6 = 0.090934, r11 = −0.68825,
r2 = 0.514122, r7 = −0.163329, r12 = −0.703934,
r3 = 0.496965, r8 = −0.190935, r13 = −0.733996,
r4 = 0.399967, r9 = −0.451888, r14 = −0.74046,
r5 = 0.226436, r10 = −0.655015, r15 = −0.766936.

(6.2)

As in the above Example 2, we find

Q3 = x + 0.71581397514413,

Q1 = x12 + 0.63848007456761x11 − 1.231418428669x10 + · · · .

We put the initial factors G0(x) and H0(x) as follows.

G0 = Q3
3, H0 = quo(F,G0).

Then, the factor separation algorithm of cutoff separation accuracy 10−13 converges at the

eighth iteration, and we obtain

G8 = x3 + 2.1783899989548x2 + 1.5814143865241x + 0.38258438220795.

42 数式処理 第 6 巻 第 3 号 1998

polynomial acc. of Gi number average log10 |Pki |

approx. square-free 284

< 1.0 × 10−13 483 −6.59
contains close roots > 1.0 × 10−13 223 −7.62

separation fails 10 −12.2 (= log10 |Pk0 |)

Table II: Results of the first experiment (15 real roots).

In fact, we have

‖F − G8H8‖ = 4.662 · · · × 10−14.

However, noting that three roots closest to the roots of Q3(x) are r12, r13 and r14, we have

‖G8 − (x − r12)(x − r13)(x − r14)‖ = 1.539 · · · × 10−9.

That is, G8 is about 3.3 × 104 (' 1.54 × 10−9/4.66 × 10−14) times less accurate than the

separation accuracy. This low accuracy is due to the smallness of |Pk8 | described in 4.3; in

fact, we have 1/|Pk8 | ' 9.5 × 104 in this case. The smallness of |Pk8 | is due to that Gi(x)

and Hi(x) have mutually close roots; among the roots r10 ∼ r15 which are rather close one

another, three roots r12 ∼ r14 are contained in G0(x) while others in H0(x).

The results of 1000 similar computations with double-precision floating-point numbers

are summarized in Table II. Among 1000 polynomials generated, 284 polynomials are

decided to be approximately square-free at accuracy 0.0039. For the rest polynomials,

factor separation succeeds for 706 ones but fails for 10 ones. Among the polynomials for

which factor separation succeeds, the accuracy of factor Gi(x) obtained is greater than

10−13 for 223 ones. Even for other 483 polynomials for which factor separation is quite

successful, the average value of |Pki | is rather small: average(|Pki |) ' 2.57 × 10−7. This

means that a large amount of accuracy usually decreases during the execution of factor

separation, which is common to methods based on the Euclidean algorithm, as analyzed

in [9].This is obviously a weak point of the factor separation algorithm.

We have investigated the reason of failure for the 10 “separation fails” samples in Table

II. For 8 samples, ‖Gi(x)‖ and ‖Hi(x)‖ grew very rapidly as i increased and the iteration

diverged. This divergence is due to that initial factors G0(x) and H0(x) have mutually

very close roots, indicating that the determination of H0(x) as H0 = quo(F,G0) is not

always adequate. For the last 2 samples, the reason is precision lack: all the significant

digits were lost during the computation of the remainder sequence.

To be fair, we also test polynomials whose roots are distributed randomly inside the

unit disc in the complex plane. In this case, polynomials of degree 15 have a very small

possibility of having close roots, so we generat polynomials of degree 30. The results of

J.JSSAC Vol. 6, No. 3, 1998 43

polynomial acc. of Gi number average log10 |Pki |

approx. square-free 17

< 1.0 × 10−13 51 −11.4
contains close roots > 1.0 × 10−13 22 −12.6

separation fails 10 −13.0 (= log10 |Pk0 |)

Table III: Results of the first experiment (30 complex roots).

experiment on 100 such samples with εc = 0.0039 are shown in Table III. Note that, in this

experiment, we encounter much greater accuracy decreasing than that in Table II, and 9

“separation fails” samples in Table III are due to precision lack.

In the experiment, we have found an interesting phenomenon which may be called

“recoupling of close roots”: suppose the initial factors are set by the approximate square-

free decomposition algorithm as G0 ' (x− r1)(x− r2) and H0 ' (x− r3)(x− r4) · · ·, where

r1, r2, r3, r4 are mutually close roots, then the factor separation algorithm gives us factors

as Gi ' (x − r1)(x − r3) and Hi ' (x − r2)(x − r4) · · ·. We note that the “recoupling”

samples are included in “> 1.0 × 10−13” cases in Tables II and III.

Before giving the results of the second experiment, we explain two examples.

Example 4

Factor separation using Smith’s error bound.

Let F (x) be the same polynomial as used in Example 1. The D-K method gives us ap-

proximate roots of F (x) and their error bounds as in Table I. We will separate the factor

(x − 0.1)3.

Using the approximate roots around x = 0.1, we put

G0 = (x − (0.09999909626683 − 0.00000042006060745357i))

×(x − (0.100000812092505 − 0.00000057737865711055i))

×(x − (0.100000111696375 + 0.00000100099111736021i)),

H0 = (x − (1.0 + 6.989 · · · i × 10−26))

× · · · × (x − (−1.0 − 1.260 · · · i × 10−24)).

We see that G0(x) and H0(x) are not so accurate:

‖F − G0H0‖ = 0.0000000306 · · · .

With G0(x) and H0(x) as initial factors, the factor separation algorithm with cutoff sepa-

ration accuracy 10−13 converges at the second iteration and we obtain

G2 = x3 − (0.3 − 8.355 · · · i × 10−17)x2 + (0.03 − 1.670 · · · i × 10−17)x

−0.001 − 8.354 · · · i × 10−19.

44 数式処理 第 6 巻 第 3 号 1998

numerical roots error bounds

r1 = 1.0 + 1.2822039276924i × 10−25 5.4479465855004 × 10−16

r2 = 0.50000000086145 − 0.0000000036953381237618i 0.000000067287807094736
r3 = 0.49999999836455 + 0.0000000048850888170233i 0.000000050828316994146
r4 = 0.2 − 4.3889644103006i × 10−25 5.4464568271483 × 10−16

r5 = 0.100010000483665 + 1.494067905993i × 10−14 0.000000013533803099881
r6 = 0.099994999805561 + 0.0000086605905057124i 0.0000000104225543952628
r7 = 0.099995000055215 + −0.0000086601579160862i 0.00000001913690749834
r8 = −0.1 − 4.0060633975116i × 10−27 7.4269864935165 × 10−17

r9 = −0.3 + 4.7768925741988i × 10−27 5.6811855508313 × 10−17

r10 = −0.6 + 6.4180265608037i × 10−26 8.5861120967374 × 10−16

r11 = −0.7 − 2.071838872006i × 10−26 2.9347290930232 × 10−16

r12 = −1.0 + 1.1436211361243i × 10−25 1.9171995324719 × 10−15

Table IV: Numerical roots and their error bounds for the polynomial in Example 5.

The factor separation is done quite well; in fact, we have

‖F − G2H2‖ = 2.246 · · · × 10−16.

Example 5

The case in which a given polynomial has close roots.

Let F (x) be the following polynomial.

F (x) = (x − 1)(x − 0.5)2(x − 0.2)((x − 0.1)3 − 10−15)

(x + 0.1)(x + 0.3)(x + 0.6)(x + 0.7)(x + 1)

F (x) has three close roots of mutual distance about 10−5 around x = 0.1. Numerical roots

and their error bounds determined by the D-K method are given in Table IV.

We see that the error bounds corresponding to roots r5, r6 and r7 are a little smaller

than those of multiple roots, but much greater than those of single roots. Moreover, we see

that r5, r6 and r7 are not multiple roots even though they have large errors. Therefore,

we put the initial factor G0 so as to contain these five inaccurate roots.

G0 = (x − r2)(x − r3)(x − r5)(x − r6)(x − r7),

H0 = (x − r1)(x − r4)(x − r8)(x − r9)(x − r10)(x − r11)(x − r12).

The accuracies of these initial factors are as follows.

‖G0 − (x − 0.5)2((x − 0.1)3 − 10−15)‖ = 0.000000001678 · · · ,

‖H0 − (x − 1)(x − 0.2) · · · (x + 0.7)(x + 1)‖ = 2.220 · · · × 10−16.

J.JSSAC Vol. 6, No. 3, 1998 45

We see that H0 is quite accurate, while G0 is not. The factor separation algorithm with

cutoff separation accuracy 10−13 converges at the second iteration, giving

G2 = x5 − (1.3 + 1.29 · · · i × 10−21)x4 + (0.58 + 2.86 · · · i × 10−22)x3

+ (−0.106000000000001 − 8.58 · · · i × 10−24)x2

+ (0.008500000000001 − 1.69 · · · i × 10−24)x
+ (−0.00025000000000025 + 9.87 · · · i × 10−26),

H2 = x7 + (1.5 + 1.63 · · · i × 10−18)x6 + (−0.37 + 7.68 · · · i × 10−19)x5

+ (−1.487 − 1.34 · · · i × 10−18)x4 + (−0.6588 − 9.24 · · · i × 10−19)x3

+ (−0.01552 − 5.96 · · · i × 10−20)x2 + (0.0288 + 3.92 · · · i × 10−20)x
+ (0.00252 + 3.73 · · · i × 10−21).

The separation accuracy and accuracies of separated factors are

‖F − G2H2‖ = 2.552 · · · × 10−16,

‖G2 − (x − 0.5)2((x − 0.1)3 − 10−15)‖ = 2.220 · · · × 10−16,

‖H2 − (x − 1)(x − 0.2) · · · (x + 0.7)(x + 1)‖ = 5.551 · · · × 10−16.

In addition to the above two examples, we have tested such polynomials that 1) having

several different multiple roots, 2) having multiple roots and close roots of mutual distance

about 10−3, 3) having close roots of mutual distances about 10−3 and 10−2, and so on.

For all the polynomials we have tested, the factor separation algorithm using Smith’s error

bound worked quite well and gave quite accurate results.

7 Concluding remarks

The factor separation algorithm is so simple and powerful that it will be applied to

many practical problems. As we have shown above, the algorithm works quite well and

gives accurate results so long as the close roots form clusters each of which is separated well

from others and initial factors G0(x) and H0(x) have no mutually very close root. Even

if we cannot clearly separate some roots as close roots from others, the factor separation

algorithm works considerably well. However, we must overcome the following difficulties.

1. If the initial factors G0(x) and H0(x) are not adequately determined then the iteration

may diverge. Determination of the initial factors depends on the problem to which we

apply the factor separation algorithm, and we must be careful for the determination.

2. For polynomials of high degrees, the accuracy will be lost largely during the execution

of the factor separation algorithm, which is the most serious weak point practically. We

need a high precision floating-point number system.

3. For irregular polynomials, Proposition 1 indicates that the condition of convergence

46 数式処理 第 6 巻 第 3 号 1998

of the iteration procedure becomes sever because C À 1, and Proposition 2 suggests

that the accuracies of separated factors are much worse than the separation accuracy.

Acknowledgements

The authors thank one of the referees for valuable comments for revising the manuscript.

References

[1] G. E. Collins, Subresultants and reduced polynomial remainder sequences, J. ACM, 14

(1967), 128-142.

[2] E. Durand, Solutions numériques des équations algébriques, Tome I. Masson et Cie,

Paris, 1960.

[3] I. O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Poly-

nomen, Numer. Math., 8 (1966), 290–294.

[4] T. Sasaki, Approximate algebraic computation (in Japanese), Collection of Research

Reports, RIMS, Kyoto Univ., No. 676 (1988), 307-319.

[5] K. Shirayanagi, An algorithm to compute floating point Gröbner bases, Mathematical

Computation with Maple V: Ideas and Applications (Ed. T. Lee), Birkhäuser, pp.

95-106, 1993.

[6] B. T. Smith, Error bounds for zeros of a polynomial based upon Gerschgorin’s theorems,

J. ACM, 17 (1970), 661-674.

[7] T. Sasaki and M-T. Noda, Approximate square-free decomposition and root-finding of

ill-conditioned algebraic equations, J. Inform. Process., 12 (1989), 159-168.

[8] See Booklet of Workshop on Symbolic-Numeric Algebra for Polynomials, INRIA,

Sophia-Antipolis, France, July 1996.

[9] T. Sasaki and M. Sasaki, Analysis of accuracy decreasing in polynomial remainder

sequence with floating-point number coefficients, J. Inform. Process., 12 (1989), 394-

403.

[10] T. Sakurai, H. Sugiura and T. Torii, Numerical factorization of a polynomial by ra-

tional Hermite interpolation, Numerical Algorithms, 3 (1992), 411-418.

	Introduction
	Notations and definitions
	Iteration formula for factor separation
	Analysis of convergence property
	Condition of convergence
	Order of convergence
	Accuracy of factor separated

	Separation of multiple/close root factors
	Using approximate square-free decomposition
	Using Smith's error bound

	Experiments
	Concluding remarks

