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Abstract

This article tests empirically two “dirty tricks” for the trial-division step of Berlekamp-
Hensel type algorithm for the univariate polynomial factorization over Z. The tricks are 1)
divisibility check of the constant term and 2) boundedness check of the second coefficient.
So far, it has been said that 1) is quite effective but 2) is not so effective. However, defining
the upper bound of the second coefficient suitably, we show by many examples that the
trick 2) is also quite effective for polynomials of medium and large degrees, such as degree
≥ 15.

1 Introduction

The polynomial factorization, especially the univariate one over Z, is an old theme

in computer algebra, but it still fascinates many researchers. Although an algorithm of

polynomial-time complexity has been devised by Lenstra et al. [LLL82], the algorithm

of Berlekamp-Hensel type [Ber67, Zas69] is very important practically. This algorithm

consists of three steps: 1) factoring a given polynomial modulo a suitably chosen prime

p, 2) Hensel-lifting of the modular factors, and 3) to find factors over Z by combining

modular factors and performing the trial-division; for details, see 2. Many researches have

been made to speed up steps 1) and 2); for recent researches, see [M&F96] for step 1) and

[C&E96] for step 2), for example.
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From the viewpoint of computational time complexity, the last step (i.e., the trial-

division step) is the most serious, and several effective methods have been proposed so

far. The methods are simple and technical, hence they are called “dirty tricks”. Among

others, 1) divisibility check of the constant term and 2) boundedness check of the second

coefficient are important. These checks are as follows. If G(x) = gnxn+gn−1x
n−1+ · · ·+g0

is a factor over Z, of F (x) = fmxm + fm−1x
m−1 + · · ·+ f0, then we have relations 1) g0|f0

and 2) |gn−1| ≤ B1, where B1 is an upper-bound of the second coefficient of the factors of

F (x). Knuth [Knu69] mentions that these checks were suggested by G. E. Collins, and an

old system MACSYMA [MAT77] employed the check 1) already in the 1970’s.

So far, it has been said that the check 1) is quite effective, see for example [ABD85],

but the check 2) is not so effective. In this article, by using a suitably defined upper-bound

of B1 and testing many examples, we show that the check 2) is also quite effective for

polynomials of medium and large degrees. We also discuss why the check 2) is so effective

and on rare cases in which the check 2) is ineffective.

2 Specification of factorization procedures

In this section, we specify Berlekamp-Hensel type algorithms for our empirical tests

and give an upper-bound of B1.

2.1 Skeleton of Berlekamp-Hensel type algorithm

Let F (x), G(x) ∈ Z[x], F (x) be primitive and square-free, and G(x) be a factor of F (x),

such that deg(G) ≤ deg(F )/2 :

F (x) = fmxm + fm−1x
m−1 + · · · + f0, fm > 0, (1)

G(x) = gnxn + gn−1x
n−1 + · · · + g0, n ≤ m/2. (2)

Below, by ‖F‖2 we denote the 2-norm of F (x): ‖F‖2 = (|fm|2 + |fm−1|2 + · · · + |f0|2)1/2.

The Berlekamp-Hensel type algorithm consists of three main steps, as follows.

Algorithm Factorize-0(F ) ==
Comment : Skeleton of Berlekamp-Hensel type algorithm.

Input : F (x), a primitive square-free polynomial over Z.
Output : List of irreducible factors over Z, of F (x).

Step1 [ Factorization over Zp ] :

Select a small prime p which does not divide fm and resultant(F,dF/dx).

(Actually, put p = 11 first; if this prime is bad then put p = 13, and so on).
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Factorize F/fm over Zp by Berlekamp’s algorithm (F (0)
1 , . . . , F

(0)
r are monic).

F/fm ≡ F
(0)
1 · · ·F (0)

r (mod p). (3)

Step2 [ Hensel-lifting of the modular factors ] :

Calculate Landau’s bound B for the coefficients of G, see [Mig81,82].

|gn| + |gn−1| + · · · + |g0| ≤ 2n‖F‖2 ≤ 2m/2‖F‖2
def= B. (4)

Let k be the smallest integer satisfying pk+1 ≥ 2fmB, and perform the Hensel con-

struction of F as follows (F (k)
1 , . . . , F

(k)
r are monic).

F ≡ fm F
(k)
1 · · ·F (k)

r (mod pk+1). (5)

Step3 [ Combining modular factors and the trial-division ] :

Put S = {F (k)
1 , . . . , F

(k)
r } and FactorList = nil.

For s = 1, 2, . . . , [r/2], do the following sub-steps 3.1 ∼ 3.4.

3.1 Select a new combination of s elements F
(k)
i1

, . . . , F
(k)
is

from S.

3.2 Calculate the product G̃ ≡ fm F
(k)
i1

· · ·F (k)
is

(mod pk+1).

3.3 If G̃ does not divide (fmF ) over Z then go to 3.4.

Save primitive-part(G̃) into FactorList, and remove F
(k)
i1

, . . . , F
(k)
is

from S.

If #elements(S) < 2s then skip 3.4.

3.4 If all the combinations of s elements are checked then s ← s + 1 .

If #elements(S) ≥ 2s then go to 3.1.

If S 6= φ then calculate G̃ = fm × [product of the elements of S]

and save primitive-part(G̃) into FactorList. 2

Remark In the above procedure, the so-called distinct degree factorization step is

omitted, which is practically quite effective. The reason is that we can see the effectiveness

of checks 1) and 2) clearly by omitting such decorations.

2.2 Divisibility check of the constant term

Let G̃(x) be a candidate of factor polynomial, computed in Step3 :

G̃ ≡ fm F
(k)
i1

· · ·F (k)
is

(mod pk+1) (6)

≡ fmxn + g̃n−1x
n−1 + · · · + g̃0 (mod pk+1). (7)
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We can calculate the constant term g̃0 in (7) quickly as

g̃0 ≡ fm

s∏
j=1

[ constant term of F
(k)
ij

] (mod pk+1) (8)

⇒ normalize g̃0 into the interval (−pk+1/2, pk+1/2).

If g̃0 does not divide (fmf0) then G̃(x) is not a factor of fmF (x) over Z and the value of g̃0

will be distributed in the interval (−pk+1/2, pk+1/2) widely. Therefore, this check will be

quite effective. The reason is that the calculation of g̃0 is much faster than the calculation

of G̃ and the divisibility check of (fmf0) by g̃0 is quite cheap generally compared with the

trial-division of (fmF ) by G̃. (Note that, although the trial-division itself can be performed

fast in many cases, we must construct every candidate G̃ in Factorize-0, which requires

some amount of time.) We call the factorization procedure with this check Factorize-1.

Algorithm Factorize-1(F ) ==
Comment : Perform the divisibility check of the constant term.
Comment : Replace the step 3.1 in Factorize-0 by the following sub-steps.

3.1.1 Select a new combination of s elements F
(k)
i1

, . . . , F
(k)
is

from S.
3.1.2 Calculate g̃0 by formula (8).
3.1.3 If g̃0 does not divide (fmf0) then go to 3.4. 2

2.3 Boundedness check of the second coefficient

There is an upper-bound for the second coefficient of the factor G(x), let it be B1.

Therefore, if |g̃n−1| > fmB1, with g̃n−1 given in (7), then G̃(x) is not a factor of fmF (x).

We can calculate g̃n−1 quickly as

g̃n−1 = remainder( fm

s∑
j=1

[second coefficient of F
(k)
ij

], pk+1 ) (9)

⇒ normalize g̃n−1 into the interval (−pk+1/2, pk+1/2).

We call a factorization procedure with this check Factorize-2.

Algorithm Factorize-2(F ) ==
Comment : Perform the boundedness check of the second coefficient.
Comment : Replace the step 3.1 in Factorize-0 by the following sub-steps.

3.1.1 Select a new combination of s elements F
(k)
i1

, . . . , F
(k)
is

from S.
3.1.2 Calculate g̃n−1 by formula (9).
3.1.3 If |g̃n−1| > fmB1 then go to 3.4. 2

2.4 Upper bounds of coefficients of a factor polynomial
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The upper-bound B1 being used so far is (see [Kal82], for example)

B1 = m‖F‖2 = (m/2m/2)B. (10)

If the product G̃ computed in Step3 is not a factor of (fmF ), then g̃n−1 in (7) will be

distributed in the interval (−pk+1/2, pk+1/2) widely. Therefore, if B1 ¿ B then the

check 2) will be quite effective. The bound B1 in (10) is not extremely smaller than B

for m < 20, hence we will define another bound B1 below. (The following simple theorem

will not be new, but we prove it for the convenience of readers).

Lemma 1

(see [1],[5]) Let z be any zero-point of F (x). Then, we have

|z| ≤ 1 +
max{|fm−1|, . . . , |f0|}

fm

def= ẑ1, (11)

|z| ≤ max{ j

√
m|fm−j |/fm

∣∣∣ j = 1, 2, . . . ,m} def= ẑ2. (12)

Theorem 2

The coefficient gn−i of G in (2) is bounded as follows.

|gn−i| ≤ |gn|
(n

i

)
(min{ẑ1, ẑ2})i ≤ fm

(
m/2

i

)
(min{ẑ1, ẑ2})i def= Bi (13)

Proof Let the zero-points of G(x) be z1, z2, . . . , zn, then we have

|gn−i|
|gn|

= |z1 · · · zi + · · · + zn−i+1 · · · zn|

≤ |z1 · · · zi| + · · · + |zn−i+1 · · · zn|.

Since |zj | ≤ ẑ
def= min{ẑ1, ẑ2} (j = 1, 2, . . . , n), and there are

(
n
i

)
terms in the above

right hand side, we have

|gn−i|
|gn|

≤ ẑi + · · · + ẑi =
(n

i

)
ẑi.

Since |gn| ≤ fm and n ≤ m/2, we finally obtain (13). 2

Remark We had better define Bi as Bi
def= fm

(
n
i

)
(min{ẑ1, ẑ2})i. However, since

the value of n varies in the algorithm, we define Bi as in (13) so as to compare with B1 in

(10) simply.

Let us compare the bound B1 in (10), let it be B1,1 , and the bound B1 in (13), let it

be B1,2 :  B1,1
def= m × (f2

m + f2
m−1 + · · · + f2

0 )1/2,

B1,2
def= (m/2)fm × min{ẑ1, ẑ2}.

(14)

Since both B1,1 and B1,2 vary largely as the coefficients of F (x) change largely, we consider

the following three models of polynomial F (x), which are easy to analyze theoretically.
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Below, we assume that m À 1, then the models show that the bound B1,2 is a considerable

improvement of the old bound B1,1.

Model A : fm ' |fm−1| ' · · · ' |f0|.
We easily see that ‖F‖2 ' ([m + 1]f2

m)1/2 ' (mf2
m)1/2, ẑ1 ' 2 and ẑ2 ' m. Since ẑ1 < ẑ2

for m À 1, we have  B1,1 ' m × (mf2
m)1/2 = m3/2fm,

B1,2 ' (m/2)fm × 2 = mfm.
(15)

We see that B1,2/B1,1 ≈ 1/
√

m. For example, B1,2/B1,1 is about 0.22 for m = 20 and

about 0.14 for m = 50.

Model B : |fm−i| '
(

m
i

)
fm, i = 1, 2, . . . ,m.

Using identity
∑m

i=0

(
m
i

)2 =
(

2m
m

)
, we find that ‖F‖2 ' fm

(
2m
m

)1/2
. Furthermore, we

readily see that ẑ1 ' 1 +
(

m
m/2

)
and ẑ2 ' m2. Since ẑ1 > ẑ2 for m > 9, we use ẑ2 for B1,2,

obtaining  B1,1 ' mfm

(
2m
m

)1/2
,

B1,2 ' m3fm/2.
(16)

Using Stirling’s formula, we find that B1,2/B1,1 ≈ m2(πm)1/4/2m+1. For example, B1,2/B1,1

is about 0.00056 for m = 20 and about 4.0 × 10−12 for m = 50.

Model C : |fm−i| ' cifm, i = 1, 2, . . . ,m, with cm−1 > m (c > 1).

We see that ẑ1 ' 1 + cm and ẑ2 ' max{mc,
2
√

mc2,
3
√

mc3, · · ·} = mc. Since cm > mc by

assumption, we have ẑ2 < ẑ1, obtaining B1,1 ' mfm × (1 + c2 + · · · + c2m)1/2 = mfm

(
c2m+2−1

c2−1

)1/2

,

B1,2 ' (m/2)fm × mc = m2cfm/2.
(17)

Therefore, we find B1,2/B1,1 ≈ m
√

c2 − 1/(2cm). For example, B1,2/B1,1 ≈ 0.043 for

c = 1.3 and m = 20, B1,2/B1,1 ≈ 0.098 for c = 1.1 and m = 50, and B1,2/B1,1 ≈ 0.0018

for c = 1.2 and m = 50.

3 Empirical tests

Since the second coefficient g̃n−1 will be distributed widely in the interval (−pk+1, pk+1) ≈
(−fmB, fmB), the check 2) is effective only if the following two conditions are satisfied.{

Condition a) : B1 ¿ B,

Condition b) : Time[trial-division] À Time[check 2)].
(18)
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Here, Time[trial-division] is the sum of times for G̃ computation and for the trial-division.

On the other hand, (10) gives us B1,1/B = m/2m/2; for example

B1,1/B ' 0.75, 0.5, 0.3125, 0.1093, 0.0195 for m = 6, 8, 10, 14, 20,

respectively. These values suggest that the check 2) with B1,1 is not effective for m ≤ 10.

On the other hand, B1,1/B ' 0.0195, 3.8 × 10−5, 5.6 × 10−8, 7.3 × 10−11, 8.9 × 10−14 for

m = 20, 40, 60, 80, 100, respectively. Therefore, the check 2) with the old bound B1,1 will

be quite effective for polynomials of large degrees, such as m ≥ 20. The improved bound

B1,2 will make the check more effective.

The above argument shows that Condition a) is critical for polynomials of degrees

10 ∼ 20. Therefore, we investigate the effectiveness of check 2) by applying Factorize-0,

-1, and -2 to polynomials of degrees 18 ∼ 21; we count the number of samples for which

checks 1) and 2) fail, and measure Time[trial-division], Time[check 1)] and Time[check

2)]. Note that the effectiveness of check 2) does not depend much on the size of coefficients:

the ratio B1,1/B is independent of fm, and B1,2/B is also independent of fm in the above

three models. Therefore, we choose integers of 4 ∼ 21 figures as fm.

Actually, the experiments were performed as follows. For each of Models A, B, and

C, we performed three tests. In each test, we generate 100 polynomials with coefficients

distributed randomly, and apply Factorize-0, -1 and -2. The polynomials used in each

test are as follows.

Test A-1 Each sample is an irreducible polynomial of degree 20, with coefficients of

random integers of 10 figures.

Test A-2 Each sample is the product of two irreducible polynomials of degree 10, with

coefficients of random integers of 8 figures, hence the sample is of degree 20.

Test A-3 Each sample is the product of three irreducible polynomials of degrees 5, 8

and 8, with coefficients of random integers of 5, 8 and 8 figures, respectively, hence the

sample is of degree 21.

Test B-1 Each sample is an irreducible polynomial of degree 20, where the coefficient

of xi term is a 10-figure random integer multiplied by 20Ci.

Test B-2 Each sample is the product of two irreducible polynomials of degrees 8 and 10,

where the coefficients of xi terms are random integers of 5 and 8 figures, respectively,

multiplied by 8Ci and 10Ci, respectively, hence the sample is of degree 18.

Test B-3 Each sample is the product of three irreducible polynomials of degrees 5, 5 and

8, where the coefficients xi terms are random integers of 5, 8 and 8 figures, respectively,

multiplied by 5Ci, 5Ci and 8Ci, respectively, hence the sample is of degree 18.
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Test C-1 Each sample is an irreducible polynomial of degree 20, with coefficients satis-

fying Model C: f20−i is a random integer of about [4 + i/2] figures.

Test C-2 Each sample is the product of two irreducible polynomials of degree 10, with

coefficients satisfying Model C: for each factor G, its coefficient g10−i is a random

integer of about [5 + i/2] figures.

Test C-3 Each sample is the product of three irreducible polynomials of degrees 5, 8 and

8, with coefficients satisfying Model C: for each factor G of degree n, its coefficient

gn−i is a random integer of about [i + 2] figures.

Tests A-i (i = 1, 2, 3) are for Model A, Tests B-i (i = 1, 2, 3) for Model B, and Tests

C-i (i = 1, 2, 3) for Model C. The value of fm is large in Test A-i and Test B-i, while

it is small in Test C-i.

Results of these tests are shown in Tables A-i, B-i, and C-i (i = 1, 2, 3). In each

table, we list the computation times spent in Step3 of Factorize-0, Factorize-1 and

Factorize-2, where each timing datum for r Zp-factors is the average over all the samples

having r modular factors. It should be emphasized that, for all the samples we have tested,

all the bad combinations of modular factors are detected by each of checks 1) and 2).

4 Explanation of the experimental data

Let us explain the experimental data in the previous section.

For Tables A-1, B-1, C-1. Each sample is an irreducuble polynomial of degree 20. Note

that, if F (x) is factorized into r irreducible factors over Zp, then we must check 2r−1−1

combinations of modular factors in Step3.

Since the checks 1) and 2) have detected all the bad combinations in our tests, there

is no trial-division in Factorize-1 and -2. Therefore, the timing data for Factorize-1 and

-2 in Tables A-1, B-1 and C-1 are for the execution of sub-steps 3.1.1 ∼ 3.1.3. We see

that the timing data Tcheck(r), 4 ≤ r ≤ 7, for Factorize-1 and -2 in Tables A-1, B-1 and

C-1 are summarized very roughly as

Tcheck(r) ≈ CC × (2r−1−1) ms, with CC = 0.1. (19)

On the other hand, the timing data TTryDiv(r), 4 ≤ r ≤ 7, for Factorize-0 in Tables A-1,

B-1 and C-1 are summarized very roughly as

TTryDiv(r) ≈ CT × [# of G̃’s constructed] ms, with CT = 2.0. (20)

Here, the number of G̃’s constructed is 2r−1−(r+1) in Tests A-1, B-1 and C-1. This means

that the time for trial-division is negligible compared with the time for G̃ computation.
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Experiment 1: Each sample is an irreducible polynomial of degree 20.

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

1 6 0.0 0.0 0.0
2 10 2.4 0.3 0.2
3 30 2.5 0.2 0.3
4 28 11.7 0.8 0.8
5 17 19.9 1.9 1.4
6 7 50.1 3.3 2.1
7 1 108.0 10.0 6.0
8 1 240.0 16.0 8.0

Table A-1: Results of Test A-1.

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

1 4 0.0 0.0 0.0
2 12 2.5 0.3 0.3
3 39 2.6 0.4 0.4
4 21 12.0 0.7 0.7
5 13 20.0 1.9 1.3
6 8 52.9 3.1 2.0
7 2 112.0 10.0 6.0
8 1 189.0 16.0 8.0

Table B-1: Results of Test B-1.

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

1 4 0.0 0.0 0.0
2 19 2.2 0.2 0.1
3 29 2.4 0.5 0.2
4 22 10.3 0.6 0.7
5 13 18.2 1.6 1.4
6 11 47.1 3.0 2.0
7 1 100.0 9.0 6.0
8 1 189.0 14.0 8.0

Table C-1: Results of Test C-1.
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Experiment 2: Each sample is the product of 2 irreducible polynomials

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

2 2 4.5 5.0 5.0
3 8 6.0 4.9 5.0
4 19 13.2 5.9 5.8
5 27 18.2 6.8 6.5
6 27 41.0 8.9 8.0
7 12 66.9 11.6 9.6
8 4 184.8 20.5 13.8
9 1 110.0 20.0 15.0

Table A-2: Results of Test A-2.

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

2 1 4.0 3.0 3.0
3 10 5.1 3.9 3.9
4 20 6.7 4.2 4.4
5 24 15.8 5.5 5.4
6 20 30.7 7.3 6.6
7 18 75.1 11.9 9.5
8 5 101.2 15.2 11.4
9 2 392.0 46.0 27.5

Table B-2: Results of Test B-2.

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

2 3 4.0 3.0 3.7
3 5 4.8 4.0 3.6
4 14 8.8 4.4 4.3
5 31 14.5 5.3 5.2
6 23 36.3 7.3 6.3
7 18 66.0 10.4 8.5
8 5 152.2 16.4 11.0
9 1 407.0 43.0 24.0

Table C-2: Results of Test C-2.
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Experiment 3: Each sample is the product of 3 irreducible polynomials

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

3 1 7.0 8.0 8.0
4 2 9.5 8.5 8.0
5 12 16.4 10.3 9.8
6 22 23.5 11.0 10.7
7 18 43.7 13.8 12.4
8 26 70.5 16.9 14.5
9 12 121.7 23.1 17.6
10 4 166.5 30.0 21.3
11 3 542.0 74.0 42.7

Table A-3: Results of Test A-3.

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

3 1 6.0 7.0 7.0
4 4 8.0 7.5 7.0
5 16 12.1 8.2 7.8
6 29 19.4 9.4 9.1
7 29 33.2 11.3 10.2
8 10 55.7 15.2 12.5
9 10 141.3 26.7 18.3
11 1 668.0 119.0 56.0

Table B-3: Results of Test B-3.

number of number of Factorize-0 Factorize-1 Factorize-2

Zp-factors samples Step3 (ms) Step3 (ms) Step3 (ms)

4 4 5.5 5.0 5.0
5 18 10.2 5.8 5.7
6 14 14.7 6.4 6.1
7 25 27.0 8.4 7.6
8 14 48.4 11.5 9.8
9 17 77.6 15.2 11.6
10 7 206.1 29.7 18.6
11 1 426.0 52.0 30.0

Table C-3: Results of Test C-3.
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The reason of this fast trial-division is as follows. Consider the trial-division of F ′(x) =

f ′
lx

l + f ′
l−1x

l−1 + · · · + f ′
0 by G̃(x) = g̃nxn + · · · + g̃0. If g̃n does not divide f ′

l then the

trial-division fails, otherwise we calculate F ′(x)−(f ′
l/g̃n)xl−nG̃(x) and continue the leading

term elimination further. If G̃(x) does not divide F ′(x), we can usually detect it in early

step of the leading term elimination.

It is interesting to note that both Tcheck and TTryDiv are nearly the same in Tests A-1,

B-1 and C-1. This means that the timing data do not depend much on the polynomial

models we have used but depend mostly on deg(F ), fm and r. In fact, although fm is small

in Test C-1, the sizes of the coefficients of G̃(x) are not much different in these tests: the

value of modulus pk+1 in (5) is about 1025, 1028 and 1020 in Tests A-1, B-1 and C-1,

respectively.

Fitting (20) to the data in Tables A-1, B-1, and C-1 rather precisely, we see that the

actual data are larger (resp. smaller) than (20) for smaller (resp. larger) values of r. The

reason is that, if r is small (resp. large) then deg(G̃) is averagely large (resp. small), hence

the time for G̃ computation becomes large (resp. small).

For Tables A-2, B-2, C-2. Each sample is the product of two irreducible polynomials.

Therefore, Factorize-1 and -2 perform one trial-division for each sample, hence one G̃

computation requires about 5ms, 4ms and 3.5ms in Tests A-2, B-2 and C-2, respectively.

Subtracting 5, 4 and 3.5 from the data for Factorize-1 and -2 in Tables A-2, B-2, and

C-2, respectively, we see that the timing data Tcheck(r), 4 ≤ r ≤ 8, for Factorize-1 and

Factorize-2 can be fitted very roughly by (19). Similarly, the timing data TTryDiv(r),

5 ≤ r ≤ 8, for Factorize-0 can be fitted very roughly by (20), with CT = 1.5 ∼ 1.3.

For Tables A-3, B-3, C-3. Each sample is the product of three irreducible polynomials.

Therefore, Factorize-1 and -2 perform two trial-divisions for each sample, hence one G̃

computation requires about 4ms, 3.5ms and 2.5ms in Tests A-3, B-3 and C-3, respec-

tively. Subtracting 2 × 4, 2 × 3.5 and 2 × 2.5 from the data for Factorize-1 and -2 in

Tables A-3, B-3 and C-3, respectively, we see that the timing data Tcheck(r), 5 ≤ r ≤ 8, for

Factorize-1 and Factorize-2 can be fitted very roughly by (19), with CT = 0.1 ∼ 0.05.

However, the timing data TTryDiv(r) for Factorize-0 cannot be fitted well by (20). The

reason is that, once an irreducible factor over Z have been detected, the number of combi-

nations to be checked decreases largely, hence the number of G̃’s to be constructed changes

largely from a sample to another.

5 Discussions

An optimal coding of the algorithm will reduce the timing data in Tables A-i, B-i

and C-i considerably. However, the fact “each of checks 1) and 2) detects all the bad
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combinations for all the samples we have tested ” shows clearly that not only the check 1)

but also the check 2) is quite effective practically for polynomials of degrees ≥ 15. Why

has the check 2) been said not so effective so far. Probably, the reason is that people in

the 1970’s tested only polynomials of low degrees with the old bound B1,1 for lack of the

computer power.

It should be noted that the check 2) is not always effective: there are polynomials for

which the check 2) is completely ineffective. For example, we can construct polynomials

such that a) the second coefficients of all the modular factors are zero, b) all the modular

factors are also the factors over Z, and so on. However, we may say that such polynomials

are in pathological cases, and the check 2) is quite effective in most cases. In such

pathological cases, we must execute other checks such as the check 1) or the boundedness

check of the third leading coefficient of G̃, etc.

Finally, let us consider what happens if m = deg(F ) and q, the number of factors over

Z, become large. Note that, even if the checks 1) and 2) detect all the bad combinations,

we must perform q − 1 trial-divisions and q G̃ computations. Therefore, the computation

times for Step 3 in Factorize-1 and -2 will increase in proportion to q. The timing-data

in the above tables show this fact clearly. However, the value of r will also increase as q

increases, which requires us to check O(2r−1) combinations of modular factors. Therefore,

so long as r À q, the checks 1) and 2) are still quite effective. For larger deg(F ), we may

well expect more modular factors. Therefore, the checks 1) and 2) will usually become

much more effective for polynomials of larger degrees.
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Note added in the revised manuscript

During incredibly long refereeing procedure (in fact, the authors got the referees’ reports

two years and half after the submission), we found a paper: Factorization in Z[x] : The

Searching Phase, by J. Abbott, V. Shoup and P. Zimmermann (Proc. ISSAC’2000). The

essence of this paper is to perform the check 2) very quickly by utilizing the floating-point

arithmetic.
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