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Abstract

We consider a fundamental question of Galois theory: how to express the roots of an
irreducible polynomial f , deg(f) > 4 in terms of elements of the ground field by rational
operations and radicals. In general, expressing the roots of f in terms of radicals is impos-
sible when deg(f) > 4. By Galois theory, however, we can test whether f is solvable by
checking solvability of its Galois group. We will give a practical method for constructing
a radical expression of the roots of f , when f is solvable, and report its experiment on a
real computer.

1 Introduction

Our purpose is to express the roots of a polynomial f(x) over the field Q of rational

numbers in terms of radicals. For this purpose we present a systematic method, consisting

of the following three parts derived quite naturally by Galois theory: (a) construction

of the Galois group Gf of f as a permutation group, (b) determining solvability of Gf

and construction of its composition series, (c) expressing the roots in terms of radicals

for solvable cases. Without loss of generality, we assume that f(x) is irreducible over Q.

This work shall provide a first springboard to further discussion and research along this

direction.

In order to construct the radical representation of roots of f , it is necessary to obtain

the Galois group Gf as a permutation group on all roots. As for (a), we employ the direct

computation of the Galois group Gf proposed in Anai et al. [1], where “direct computation”

means to obtain a concrete representation of Gf as a permutation group on the roots of
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f . We note that we can also employ the technique p-adic approach described in Yokoyama

[26] which seems work very efficiently. For (b), we do not propose new algorithms since

this part is not dominant in the whole procedure. Here we can use existing algorithms

for group theory, see [21], [3] and [12]. Thus the first two parts have been solved and the

remaining problem is how to execute (c) which we focus on.

Remark 1

For the Galois group computations there is an approach using classification tables of all

transitive subgroups in the symmetric groups (see the recent survey in Hulpke [14]). For

the solvability of a polynomial, there is a special algorithm by Landau & Miller [15] and its

improvement by Yokoyama et al. [28]. Since these methods do not satisfy our requirement

as they are, we do not employ them. However, to improve the efficiency of our proposed

method, techniques used in their approach are useful. In particular, the direct method

employed for (a) can be improved by p-adic technique in [26].

We shall deal with a solvable polynomial f only, since we assume that (a), (b) are

resolved. So, the Galois group Gf is solvable and a composition series is already computed.

By the Galois correspondence, there exists a subfield tower where every successive extension

is a cyclic extension. Once a primitive element is expressed by radicals for each extension in

the subfield tower, we obtain radical representations of roots of f . We pay special attention

to the followings:

(c-1) Subfield computation: Methods in rather general setting are known, see Lazard

& Valibouze [16], Dixon [8]. For our purpose, however, we utilize the speciality of the

problem: We already know a composition series of Gf as permutation groups on the roots

and a fixed primitive element β of the splitting field Kf . We present a method to obtain

a corresponding subfield by using the polynomial associated with the orbit of a subgroup

containing β. Several authors has presented some more specified methods to construct an

intermediate field aiming at efficiency (see [13][17]).

(c-2) Radical representation of cyclic extensions: We provide an abstract proce-

dure based on the Lagrange resolvent and devise concrete algorithms in order to make the

abstract procedure practicable based on elimination ideal computation which can be effi-

ciently executed by basis-conversion in Gröbner basis algorithms. (See Remark 2 for the

reason why we introduce these notions. )

(c-3) Combining (c-1) and (c-2): To obtain radical representation of a root of f(x),

we have to combine algorithms presented in (c-1) and (c-2) adequately. This combination

is achieved through the representation of the splitting field.

Since exact complexity analysis has not been done for the direct method employed for

(a), we do not discuss complexity of our proposed method. Instead, efficiency of these

methods is examined by experiments. We have implemented all algorithms mentioned
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in this paper on a computer algebra system Risa/Asir [18] and computed a number of

examples. Their performance and detailed results are listed in appendices. This shows

that computing radical representation is practicable for polynomials whose splitting fields

and Galois groups are computed by the direct method.

Remark 2

A different approach for computation of a radical representation is shown in Sturmfels

[22] based on invariant theory of finite groups. In his approach, the Galois group Gf is

also computed as a permutation group on the roots beforehand and each root is assigned

to an indeterminate. (We denote them by X.) After computing invariants of Gf in the

polynomial ring Q[X], the splitting field is computed by decomposition of the computed

ideal, where factorization of polynomials is required. Then, a sequence of radical repre-

sentation of elements invariant by subgroups in the composition series is computed, from

which a sequence of radical representations of primitive elements of subfields is obtained

by substitution.

Under an assumption that Gf is already known, his approach is applicable, and for

another polynomial whose Galois group is permutationally isomorphic to Gf , we can use the

same sequence of radical representations of invariant elements. So it might be an efficient

complete procedure by combining with table-based methods in Remark 1. Comparison

between our approach and Sturmfels’ approach in both theory and practice should be our

next work.

This paper is organized as follows. In §2 we sketch the mathematical basis. In §3
we give an outline of the whole procedure, and in §4 we present a procedure for finding

subfields. In §5 we present procedures for radical representations of cyclic extension fields.

In §6 we give a precise discussion on the whole procedure. In §7, we report our experiment

on actual computation. Finally, in §8, we give our conclusion. In Appendix A, we list

bench-marks for the method and in Appendix B, we list some results.

2 Mathematical Background

Here, we provide necessary notions and definitions of mathematical basis for radical

representation of roots of polynomials. See van der Waerden [25].

2.1 What is radical representation

Let K be the field Q of rational numbers or its extension. For an algebraic element

α over K, if α is expressed in terms of the elements of the ground field K by rational

operations and radicals, we call the expression a radical representation of α over K. For

example, (1+
√
−3)/2 is a radical representation of a primitive 6-th root of unity. But, 6

√
1
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also gives a radical representation. (See [25].) From this, we recognize that there are two

types for radical representation. We list up points.

〈1〉 An algebraic element is defined as a root of an irreducible polynomial over the ground

field K. This polynomial is called the minimal polynomial of the element. Two algebraic

elements are algebraic conjugate over K if and only if their minimal polynomials coincide.

〈2〉 In general, m
√

a is not a single valued function. So the radical representation may

present other elements if choice of the radicals appearing in it are changed.

〈3〉 It is very preferable that a radical representation of an algebraic element is to present

its algebraic conjugate for any choice of the radicals appearing in the representation. (If a

radical appears twice or more, it is assigned the same value for each time.)

If a radical representation satisfies the property described in 〈3〉, we call it a strong radical

representation. Then (1 +
√
−3)/2 is a strong radical representation, but 6

√
1 is not.

〈4〉 For an irreducible polynomial f(x) over Q, every its root has a strong radical repre-

sentation if and only if the Galois group of f is solvable. By using the action of its Galois

group, if one root of f has a strong radical representation, every root is also represented

by the representation.

Hence, our target here is to compute a strong radical representation of one root for a given

irreducible polynomial with solvable Galois group.

2.2 Galois theory

We briefly survey how a root of a solvable polynomial is represented in terms of radicals.

Fix a monic irreducible polynomial f(x) over Q. Then, its Galois group Gf is solvable if

and only if the following subgroup tower, called a composition series, exists:

Gf = G0 ⊃ G1 ⊃ · · · ⊃ Gr−1 ⊃ Gr = 1,

where Gi is a normal subgroup of Gi−1 and Gi−1/Gi is a cyclic group with prime order pi

for each i. We assume that such a tower exists. By the Galois correspondence, there is a

subfield tower

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kr−1 ⊂ Kr = Kf ,

where Kf is the splitting field of f and Ki is the field consisting of all elements in Kf fixed

by Gi. Then Ki is a cyclic extension of Ki−1 and its extension degree [Ki : Ki−1] is equal

to pi. Since Ki/Ki−1 is a finite extension, there is a primitive element βi in Ki over Ki−1

such that Ki = Ki−1(βi).

If all primitive elements βi are expressed by radicals, then all roots of f are also ex-

pressed by radicals. The solvability of Gf , therefore, means that all primitive elements
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in the subfield tower can be expressed by radicals. The following describes the details for

each extension Ki/Ki−1. Here, we denote a primitive pi-th root of unity by ζpi .

Let Li−1 = Ki−1(ζpi) and Li = Ki(ζpi). Then, there exists a primitive element βi of

Li such that βpi

i belongs to Li−1. That is, βi is the pi-th root of an element βpi

i .

Since every p-th root of unity for a prime p can be represented by radicals over Q, once βi

is represented by radicals, βi+1 is also represented by radicals. Consequently, the primitive

element of Kr is represented by radicals and all roots of f over Kr are represented by

radicals. Thus, the problem of radical representation of polynomial roots is reduced to the

problem of radical representation of cyclic extension fields.

2.3 Radical representations of cyclic extensions

To express a cyclic extension by radicals, we give a standard method, found in text-

books, based on Lagrange resolvent. Consider a cyclic extension K(β)/K appearing the

subfield tower. Let n = [K(β) : K] and σ a generator of its Galois group. For radical

representation of β over K, what we need is an element γ in K(β) such that γ is also a

primitive element and γn belongs to K. The Lagrange resolvent gives an “efficiently com-

putable” primitive element. For simplicity, we assume that the ground field K contains a

primitive n-th root of unity. Then the following well-known proposition holds:

Proposition 1

There is an element a in K such that xn − a is K-irreducible and K(γ) = K(β) for any

its root γ. Moreover, for a non-zero element γ in K(β), K(γ) = K(β) and γn ∈ K if and

only if σ(γ) = γζ for some primitive n-th root ζ of unity.

For the given primitive element β, we form the Lagrange resolvent

u(β, ζ) = β0 + ζβ1 + · · · + ζn−1βn−1, (1)

where ζ is an n-th root of unity (not necessarily primitive) and βν = σν(β). Then,

σ(u(β, ζ)) = β1 + ζβ2 + · · · + ζn−2βn−1 + ζn−1β0 = ζ−1u(β, ζ). (2)

Then σ(u(β, ζ)n) = u(β, ζ)n and so u(β, ζ)n ∈ K. Moreover, if there is a primitive n-th

root of unity ζ such that u(β, ζ) 6= 0, then u(β, ζ) is a primitive element of K(β)/K.

Because, ζ−1 is also a primitive n-th root of unity. And there exists such a primitive n-th

root ζ when n is prime. (See Remark 3.) Thus, in this case, there is a polynomial P (x)

over K such that P (u(β, ζ)) = β. From this, we obtain a radical representation of β.

Another popular representation utilizes Lagrange resolvents u(β, ζ) for all n-th roots ζ.

By multiplying ζ−r to Equation (1) and computing summation for all n-th root of unity

ζ, we have ∑
ζ

u(β, ζ) = nβ. (3)
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Thus, if we know every u(β, ζ), we can express β as the sum of u(β, ζ)’s, all of which are

n-th roots of elements in K.

Remark 3

(1) Since the automorphisms, identity, σ, . . . , σn−1, are linearly independent, for each n-th

root ζ of unity, there is an element γ in K(β) such that u(γ, ζ) 6= 0.

(2) For the fixed primitive element β, Equation (3) implies that there is an n-th root of

unity such that u(β, ζ) 6= 0. Thus, if n is prime, there is a primitive n-th root ζ of unity

such that u(β, ζ) 6= 0. Because every non-trivial n-th roots of unity is primitive.

2.4 Finding necessary algebraic relations by Gröbner basis tech-

niques

In our method, every algebraic number is represented as an element of a certain residue

class ring obtained by factoring a polynomial ring Q[x1, . . . , xr] by its ideal I, where certain

algebraic numbers, say γ1, . . . , γr, are assigned to variables x1, . . . , xr respectively. Then,

every arithmetic operation is executed over the residue class ring Q[x1, . . . , xr]/I. For

arithmetics over the residue class ring, the techniques of Gröbner basis and its applications

are very useful. We give a brief explanation on a useful technique elimination by basis-

conversion. (See Buchberger[5], Cox et al.[7] and Becker and Weispfenning[4].)

Assume that algebraic numbers γ1, . . . , γr are given. We assign variables x1, . . . , xr to

these. Letting I be the maximal ideal consisting of all polynomials having (γ1, . . . , γr) as

their zero, we have Q(γ1, . . . , γr) ≡ Q[X]/I, where X = {x1, . . . , xr}. Conversely, when a

maximal ideal I is given, algebraic numbers γ1, . . . , γr which satisfy all polynomials in I
are determined up to their conjugates by the Galois group of the Galois closure Q̄.

Since I is maximal, with respect to the lexicographic order x1 ≺ . . . ≺ xr, its reduced

Gröbner basis becomes {f1(x1), f2(x1, x2), . . . , fr(x1, . . . , xr)}, where each fi is a polyno-

mial in x1, . . . , xi over Q and it is monic with respect to xi. Then fi(γ1, . . . , γi−1, xi) is

the minimal polynomial of γi over Q(γ1, . . . , γi−1). Thus, by changing the variable order,

we can compute the minimal algebraic relation among specified algebraic numbers. This

technique is related to elimination ideal computation and it can be executed efficiently by

basis-conversion technique. In the basis-conversion technique, once one has a Gröbner basis

of the ideal I with respect to some order, one can compute another Gröbner basis of I with

respect to one’s desired order merely by solving a system of linear equations (see [11]).

Remark 4

For finding “certain” minimal algebraic relations among specified algebraic numbers, it

might seem inadequate to introduce the notion “elimination ideal computation” and use

the full computation of Gröbner bases. When we compute algbraic relations at each step

in the computation of radical representation, in many cases, we can guess their shapes,
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i.e. we know all possible terms which may appear in the relation. And all such terms

are expressed by vectors over Q, since the linear basis of the residue class ring Q[X]/I is

computed by the Gröbner basis of I. (In our setting, we are given a Gröbner basis of I
with respect to a certain order <. ) Thus, we can compute necessary algebraic relations

by solving systems of linear equations derived from vector representation of possible terms.

This is the “principle” of basis-conversion technique, and to simply the description of

our algorithm, we use the notion of elimination ideal computation and basis-conversion.

Becasue, we can avoid unnecessary computation by stopping the basis-conversion when we

obtain every necessary elements.

For example, if we already know that an algebraic number γi0 can be expressed as

a polynomial P in γi1 , . . . , γis over Q, that is, xi0 − P (xi1 , . . . , xis) belongs to I. With

respect to the lexicographical order xi1 ≺ . . . ≺ xis ≺ xi0 ≺ . . ., the reduced Gröbner basis

G contains g1(xi1), . . . , gs(xi1 , . . . , xis), gs+1(xi1 , . . . , xis , xi0). Since xi0 − P (xi1 , . . . , xis)

is reduced to 0 by M-reduction with respect to G, xi0 −P (xi1 , . . . , xis) is reduced by gs+1.

This implies that gs+1 is linear with respect to xi0 , i.e. gs+1 = xi0 − Q(xi1 , . . . , xis) for

some polynomial Q. This is a polynomial expression of γi0 in γi1 , . . . , γis .

To extract algebraic relations between fixed elements γi0 , γi1 , . . . , γis
, we may use an-

other order. In many cases, employing the following block order improves the efficiency.

Let ≺1, ≺2 be admissible orders on the set T1 of terms generated by U = {xi0 , . . . , xis}
and that T2 of terms generated by X \ U , respectively. For two terms t = t1t2, t′ = t′1t

′
2

such that ti, t
′
i belongs to Ti, t ≺ t′ is defined by (t2 ≺2 t′2) or (t2 = t′2 and t1 ≺1 t′1). We

write U ≺≺ X \ U . The following gives a theoretical base for the argument above.

Proposition 2

Let ≺ be the above block order and G a Gröbner basis of I with respect to ≺. Then,

G ∩ Q[U ] is a Gröbner basis of I ∩ Q[U ].

For an ideal I of Q[X], the ideal I ∩ Q[U ] is called the elimination ideal of I. Thus,

Proposition 2 gives the concrete procedure for computation of elimination ideal. For general

notions and algorithms concerning with Gröbener basis, see text books [7] and [4].

3 Outline of the Whole Procedure

Here, we give an outline of the whole procedure. We consider a monic irreducible

polynomial f(x) of degree n in the following situation:

Context: We have already computed the splitting field Kf of f and its Galois group Gf .

Then Kf is represented by Q[y1, . . . , yn]/J , where J is a maximal ideal called the defining

ideal of Kf . Each root αi of f(x), i = 1, . . . , n, is represented by a variable yi, and Gf

is represented as a permutation group on y1, . . . , yn. Actually Gf is obtained by a set of
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generators called a strong generating set. The defining ideal J is generated by the defining

polynomials f1(y1) = f(y1), f2(y1, y2), . . . , fn(y1, . . . , yn) such that each fi is monic and

irreducible with respect to yi over the extension field Q[y1, . . . , yi−1]/Id(f1, . . . , fi−1),

where Id(A) denotes the ideal generated by A. The set {f1, . . . , fn} forms a (reduced)

Gröbner basis of J with respect to the lexicographic order y1 ≺ y2 ≺ . . . ≺ yn. A primitive

element β of Kf over Q is also computed as a linear sum of roots, i.e. β = a1α1+· · ·+anαn

for ai ∈ Q. By [1] there is an integer `, called the length, such that Kf = Q(α1, . . . , α`).

Then, for a primitive element β, we can set a`+1 = · · · = an = 0.

An outline of the flow of the whole computation is as follows:

General Procedure of Radical Representation

Input: f(x), G, Kf , β. ( i.e. the output of the direct method in [1])

Output: radical representation of the roots of f .

Restriction: f is solvable. (irreducible, monic)

1. Find the subgroup tower (composition series) of G.

2. Find the corresponding subfield tower.

3. Compute the radical representation of each cyclic extension.

3.1 Subgroups and solvability

We comment on the computation of subgroups of Gf briefly. Here, we employ the

existing method using strong generators, see Butler [6], Furst et al [12]. Now, a strong

generating set S = {s1, . . . , st} of Gf is given and each element si in S is expressed as a

permutation on the roots. The commutator subgroup [Gf , Gf ] of Gf is the normal closure

of a group generated by commutators [si, sj ] = s−1
i s−1

j sisj for 1 ≤ i, j ≤ t:

[Gf , Gf ] = 〈[si, sj ] | 1 ≤ i, j ≤ t〉G.

The strong generating set S1 of [Gf , Gf ] is computed by the normal closure computation

(see also [12]). Thus, we obtain the following subgroup tower by repeating computation of

commutator subgroups: (G B G′ implies that G′ is normal in G.)

Gf = G0 B G1 = [G0, G0] B G2 = [G1, G1] B · · · B Gr = [Gr−1, Gr−1]

Once the sequence of commutator subgroups is obtained, we can also determine the solv-

ability of Gf immediately by checking whether Gr = 1 or not. The sequence of commutator

subgroups is a normal chain and each Gi−1/Gi is abelian. From the normal chain, a com-

position series is computed easily. As the computation of subgroups is not a dominant

step in the whole procedure, we do not consider a new method. We should examine which

method is suited for practical computation.
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3.2 Subfields

We present a method for constructing a subfield tower. From now on, we only consider

the solvable case. Thus we already know a composition series G0 = Gf , G1, . . . , Gr = 1.

Let Bi be the orbit of Gi containing the fixed primitive element β of Kf over Q, i.e.

Bi = {σ(β) | σ ∈ Gi}. Since β is a primitive element, B0 is the set of all conjugates of β

in Kf and G acts on B0 regularly. From this, we have |Bi| = |Gi| = [Kf : Ki].

Definition 3

For a finite set B in Kf , we define the polynomial fB corresponding to B by

fB =
∏
b∈B

(x − b).

We call the field obtained by adjoining all coefficients of fB to Q the field corresponding

to B and denote it by KB . Then KB is a subfield of Kf .

Lemma 4

For each orbit Bi, the subfield KBi coincides with Ki.

Proof First we show Ki ⊇ KBi . Since each coefficient of fBi is a symmetric function

in elements in Bi, it is fixed by Gi. By the Galois correspondence, this implies Ki ⊇ KBi .

Next we show KBi = Ki. As β belongs to Bi, fBi(β) = 0. Since deg(fBi) = |Bi| = |Gi|,
[Kf : KBi

] ≤ |Gi| = [Kf : Ki]. Since KBi
⊂ Ki, we obtain [Kf : KBi

] = [Kf : Ki] and

hence Ki = KBi .

Lemma 4 corresponds to Lemma 1 in [16]. Since [Ki−1 : Ki] is prime, Ki is maximal in

Ki−1. By this fact and [27], we have:

Corollary 5

(1) Among all coefficients of fBi , there is a primitive element of Ki over Ki−1. Moreover,

any coefficient of fBi not belonging to Ki−1 is a primitive element of Ki over Ki−1.

(2) There is a primitive element of Ki over Q among Q-linear sums of coefficients of fBi ,

in particular, among the fBi(a) for distinct (|Bi| − 1)|Ki : Q| elements a of Q.

(3) Assume that βi−1 is a primitive element of Ki−1 over Q and β′ is that of Ki over Ki−1.

Then, there is a primitive element of Ki over Q among βi−1 + aβ′ for |Ki : Q| distinct

elements a of Q.

Definition 6

We call a primitive element of Ki over Ki−1 a relative primitive element. And, we call a

primitive element of Ki over Ki−1 an absolutely primitive element, if it is also a primitive

element of Ki over Q.

Now fBr = x − β and β is the last primitive element of Kr over Kr−1. Meanwhile, for

the last relative primitive element of Kr over Kr−1, we can choose some root αi.
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Lemma 7

Among all roots α1, . . . , αn, there is a relative primitive element of Kr. (In particular,

among roots α1, . . . , α`, there is a relative primitive element of Kr.) If Gr−1 is a normal

subgroup of G0, then every root αi is a relative primitive element of Kr.

Proof Since Kr is the splitting field of f , any proper subfields do not contain all roots

of f . From this, there is a root, say αi, of f which does not belong to Kr−1, and since

there is no proper subfield between Kr−1 and Kr, Kr−1(αi) = Kr. Moreover if G0 BGr−1,

then Kr−1 is a Galois extension over Q. From this, if Kr−1 contains some root αi, then

Kr−1 contains every conjugate of αi and this implies a contradiction.

Definition 8

There is a case where one root of f belongs o a proper subfield Ki, i < r. We call this

contractible case and call such a root a contractible root and such a subfield a contracting

subfield. Of course, the contractibility of each root depends on the choice of a composition

series of the Galois group.

Since β is a linear sum of roots and Gi is represented as a concrete permutation group

on the roots, elements of Bi are computed as polynomials in y1, . . . , yn modulo J and

coefficients of fBi are also computed as polynomials in y1, . . . , yn modulo J .

Now, we present an abstract procedure for computing subfields by relative primitive

elements. We assume that K1, . . . ,Ki are already computed, that is, primitive elements

β1, . . . , βi are already computed. Then, we compute a primitive element βi+1 of Ki+1. By

Corollary 5 (1) or Lemma 7, we choose βi+1 from all coefficients of fBi+1 or roots of f .

Finding such an element is reduced to determining a certain algebraic relation between

β1, . . . , βi and each candidate. Determination of algebraic relations is easily computed by

Gröbner basis algorithms in §2.4. We will give a further discussion later.

Procedure Next Relative Primitive Element

Input: Gi+1, β, β1, . . . , βi.

Output: βi+1, mi+1(β1, . . . , βi, x).

1. Compute the polynomial fBi+1 corresponding to Bi+1.

2. Find a coefficient c not belonging to Ki among all coefficients of fBi+1 .

(When i = r − 1, we can replace the steps 1, 2 with the following step 1′.

1′. Find a root c not belonging to Kr−1 among all roots of f(x).)

3. Find the minimal polynomial of c over Ki as an algebraic relation between β1, . . . , βi

and c with smallest exponent d (=pi+1) such that

cd + ad−1(β1, . . . , βi)cd−1 + · · · + a0(β1, . . . , βi) = 0,

where a0, . . . , ad−1 are polynomials in β1, . . . , βi over Q.
4. Return c as βi+1 and xd + ad−1x

d−1 + · · · + a0 as mi+1(β1, . . . , βi, x).



J.JSSAC Vol. 9, No. 1, 2002 63

Remark 5

We can also compute a sequence of absolutely primitive elements of Ki’s by using facts in

Corollary 5 and algorithms in [27]. In this paper, we use relative primitive elements, because

they are superior to absolutely primitive elements in terms of practical computation. See

§7.2.

3.3 Radical representations of cyclic extension

By §2.2, we have the following abstract procedure for radical representations of cyclic

extensions with prime extension degree:

Procedure Radical Representation of Cyclic Extensions

Input: the minimal polynomial m(x) of a primitive element γ of a cyclic extension
field L with prime extension degree p over K, and the minimal polynomial
g(y) of a primitive p-th root of unity ζ over K.

Output: a radical representation of γ over K. (γ, ζ are assigned to x, y, respectively.)

Assumption: a primitive p-th root of unity ζ is represented by radicals and it
gives a non-zero Lagrange resolvent.

1. Construct a non-zero Lagrange resolvent u(x, y) and let h(x, y, z) = z − u(x, y).

2. Represent x as a polynomial P (y, z) from m(x), g(y), h(x, y, z).

3. Compute zp and reduce it by m(x) and g(y) to a polynomial R in K[y].

4. Replace z in P (y, z) with n
√

R and replace y in P (y, z) with its radical representation.

5. Return P .

Since [K(ζ) : K] < [K(γ) : K], [K(γ) : K] and [K(ζ) : K] are mutually prime. Therefore,

K(γ) and K(ζ) are linearly disjoint over K and so K(γ, ζ) ∼= K[x, y]/Id(f(x), g(y)).

To execute the above algorithm efficiently, the most expensive part is to express x as a

polynomial in y and z. We obtain P (y, z) by computing algebraic relation among x, y and

z from m(x), g(y) and h(x, y, z) as described in §6.

3.4 The radical representation of a primitive root of unity

In computing radical representations, a primitive p-th root of unity must be expressed

by radicals beforehand. A radical representation of a primitive n-th root of unity ζn for a

positive integer n is also obtained by the method using Lagrange resolvent, see [2]. The

extension field obtained by adjoining ζn is an abelian extension with degree smaller than

n and so if we know the radical representation of a primitive m-th root ζm of unity for

any positive integer m smaller than n, we can represent ζn by radicals. Thus, radical

representation of ζn is reduced to the case of smaller degree. Moreover, suppose that

n = pe1
1 · · · per

r . Then, ζn is expressed by ζn = ζp
e1
1

ζp
e2
2
· · · ζper

r
and so if the radical
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representation of each primitive pei
i -th root of unity ζp

ei
i

is known, we are able to represent

ζn in terms of radicals. By repeating these reductions, the radical representation of a

primitive n-th root of unity is reduced to the case of smaller prime.

As for strong radical representation, we note the following. By the theory of cyclotomic

fields, if n,m are mutually prime, then Q(ζn) and Q(ζm) are linearly disjoint over Q and

ζnζm is a primitive nm-th root of unity. From this fact, we have the following.

Lemma 9

Let n,m be mutually prime positive integers. The product of strong radical representations

of ζn and ζm gives a strong radical representation of ζnm.

4 Subfield Computation

Now, we present a concrete method for constructing the subfield tower discussed roughly

in §3.2. Assume the context of §3.

Remark 6

We can omit the redundant variables y`+1, . . . , yn, where ` is the length of the representa-

tion of Kf . Because each root α`+i, 1 ≤ i, is expressed by a polynomial in y1, . . . , y` over

Q (see [1]).

From now on, we denote y1, . . . , yn or y1, . . . , y` by y1, . . . , yt and set Y = {y1, . . . , yt}. If

we use the above improvement, then t = ` and J = Id(f1, . . . , f`), and otherwise, t = n

and J = Id(f1, . . . , fn).

4.1 Finding subfields

Our target is the subfield tower K0, . . . ,Kr corresponding to the composition series

G0, . . . , Gr. First, for each i, 1 ≤ i ≤ r − 1, we compute the orbit Bi of Gi containing

the fixed primitive element β, and its corresponding polynomial fBi . By Corollary 5 (1),

we have only to find a coefficient of fBi
not belonging to Ki−1 as a primitive element of

Ki. Also, by Lemma 7, we can find a primitive element of Kr over Kr−1 among roots

α1, . . . , αt. Procedure Next Relative Primitive Element gives an abstract procedure

for it. Thus, we concentrate on how to find a desired element, a coefficient of fBi or a root

αj , under the following setting.

Setting: Assume that relative primitive elements β1, · · · , βi−1 are already computed, where

each βj , j = 1, . . . , i − 1, is represented by a polynomial in Y over Q. The minimal

polynomial mj(β1, . . . , βi−1, x) of βj over Kj−1 is also computed for j = 1, . . . , i − 1.

Choose a candidate γ, a coefficient of fBi or a root αj , if i = r, for some j. Then, we can

determine whether γ is a primitive element of Ki over Ki−1 as follows. By elimination ideal



J.JSSAC Vol. 9, No. 1, 2002 65

computation, we can compute algebraic dependency. Let u1, . . . , ui−1, v be new variables

assigned to β1, . . . , βi−1, γ, respectively. That is,

uj − βj(Y ) = 0 for j = 1, · · · , i − 1 and v − γ(Y ) = 0.

We set Ui−1 = {u1, . . . , ui−1}. Let J̄ = Id(u1 − β1, . . . , ui−1 − βi−1, v − γ, f1, . . . , ft)

in Q[Y,Ui−1, v]. Then, J̄ is a maximal ideal such that Q[Y,Ui−1, v]/J̄ ∼= Kf . And,

{v − γ, ui−1 − βi−1, . . . , u1 − β1, ft, . . . , f1} is a Gröbner basis of J̄ with respect to the

lexicographical ordering Y ≺ Ui−1 ≺ v. Here we also denote by Y the order y1 ≺ . . . ≺ yt

and so on.

Theorem 10

(1) The ideal J̄ ∩Q[Ui−1] coincides with the maximal ideal generated by minimal polyno-

mials m1(u1), . . . ,mi−1(Ui−1) over Q.

(2) The ideal J̄ ∩ Q[Ui−1, v] coincides with the ideal generated by m1, . . . ,mi−1 and the

minimal polynomial of γ over Ki−1.

Proof We note that since J̄ is a maximal ideal, every elimination ideal becomes a

maximal ideal of each corresponding polynomial ring.

(1) Since J̄ ∩ Q[Ui−1] is a maximal ideal, it contains every algebraic relation among

β1, . . . , βi−1 and its residue class ring is isomorphic to Ki−1, therefore, m1, . . . ,mi−1 belong

to J̄ ∩ Q[Ui−1]. But, since each mj is irreducible over Kj−1, {m1, . . . ,mi−1} generates a

maximal ideal J̇ such that Ki−1 ≡ Q[Ui−1]/J̇ . From this, we have J̄ ∩ Q[Ui−1] = J̇ .

(2) By using the similar argument as above, we can prove (2).

Corollary 11

Let GB be the reduced Gröbner basis of J̄ with respect to a block order {Ui−1 ≺ v} ≺≺ Y .

Then,

(1) GB contains mj(Uj) for each j, 1 ≤ j ≤ i − 1.

(2) GB contains a polynomial h(Ui−1, v) which coincides with the minimal polynomial of

γ over Ki−1.

Changing from the lexicographic order to the block order, we can compute the minimal

polynomial of γ over Ki−1 by Gröbner basis algorithms or equivalenty by solving a system

of linear equations (see §2.4), and moreover, we can determine whether γ belongs to Ki−1

by testing whether the minimal polynomial of γ is linear with respect to v.

Corollary 12

Use the same notation as in Corollary 11. Then, γ is a primitive element of Ki over Ki−1

if and only if there is an element in GB which is a polynomial in Ui−1, v over Q with

nonlinear v-term.
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4.2 Finding contractible roots

As a by-product of finding relative primitive elements, we can find a contractible root.

Corollary 14 shows that we can check whether there is a contractible root immediately.

Lemma 13

If some Ki is a contracting subfield for a root αj , 1 ≤ j ≤ t, then there is a polynomial

yj − P (Ui) in the ideal J̄ ′ = Id(u1 − β1, . . . , ui − βi, f1, . . . , ft) of Q[Y,Ui].

Corollary 14

Let GB be a Gröbner basis of J̄ ′ with respect to a block order Ui ≺≺ Y . Then, Ki is a

contracting subfield for some αj if and only if there is a polynomial in Ui, yj linear with

respect to yj in GB.

Remark 7

For radical representation, it suffices to compute one radical representation of a contractible

root αj in its contracting subfield Ki. This gives further improvement to the total efficiency.

Moreover, since we use some cyclotomic field Q(ζ) as a ground field (See §6), there is a

case where a root of f does not belong to Ki but it belongs to Ki(ζ). This case is also

termed contractible.

5 Radical Representation of Cyclic Extensions

Here we present concrete methods for the radical representation of general cyclic ex-

tensions with prime degree under the following setting:

Setting: Let L be a cyclic extension of the ground field K with prime extension degree p,

and G its Galois group, where K is either Q or its finite extension. A primitive element β

of L/K, and all its conjugates over K are given. This implies that the minimal polynomial

m(x) of β over K is given and all conjugates of β are expressed as polynomials in β over

K by the identification L = K(β) ∼= K[x]/Id(f(x)), where x is assigned to β.

The algorithm consists of two parts: construction of a non-zero Lagrange resolvent and

construction of an expression of the fixed primitive element as a polynomial in the Lagrange

resolvent and the fixed primitive p-th root of unity.

5.1 Finding a non-zero resolvent

We seek a primitive p-th root ζ of unity which gives non-zero Lagrange resolvent u(β, ζ).

As mentioned in Remark 3 (2), there exists such a primitive p-th root ζ. Let g0(y) be the

minimal polynomial of a primitive p-th root of unity over Q. Then, g0(y) is also the minimal

polynomial of any primitive p-th root of unity. In order to represent the composite field L′
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of L and the cyclotomic field K ′ generated by all p-th roots of unity, we factorize g0 into

its irreducible factors g1, . . . , gs over L = K(β).

Lemma 15

(1) For each primitive p-th root ζ of unity , K ′ = K(ζ) and L′ = L(ζ).

(2) Every irreducible factor gi is also an irreducible polynomial over K and has the same

degree.

Proof Since (1) is clear, we have only to show (2). Since deg(gi) = [L′ : L], every

irreducible factor has the same degree. We show that gi’s are polynomials over K. If K

contains a primitive p-th root, then gi’s are polynomials over K. Thus, we assume that K

does not contain any primitive p-th root. Since [K ′ : K] < p, K ′ and L are linearly disjoint

and so [L′ : L] = [K ′ : K]. Thus each gi is a polynomial over K.

By Lemma 15, each Ri = K[x, y]/Id(f(x), gi(y)), i ≥ 1, is isomorphic to L′, where we

assign a variable y to each primitive p-th root. By Remark 3 (2), we have:

Lemma 16

(1) There is some Ri such that u(x, y) 6= 0 in Ri. In particular, if g0 is irreducible over K,

u(β, ζ) 6= 0 for any primitive p-th root ζ of unity.

(2) If u(β, ζ) = 0 for a fixed primitive p-th root ζ of unity, then there is a positive integer

s less than p such that u(β, ζs) 6= 0, where ζs is also a primitive p-th root of unity.

We fix a primitive p-th root ζp. By Lemma 16 one of the following holds.

(a) g(y) = gi(y) for some i, L′ = Ri
∼= K[x, y]/Id(f(x), g(y)) and a variable z is assigned

to the non-zero Lagrange resolvent u(x, y) in L′,

(b) g(y) = gi(y) for some i, L′ = Ri and a variable z is assigned to the non-zero Lagrange

resolvent u(x, ys) in L′ for some s.

Then, u(β, ζp)p or u(β, ζs
p)p is easily computed in Ri, and it is expressed as a polynomial

H(ζp)(= H(y)) in ζp(= y) over K. The minimal polynomial h(x, y, z) of z over L′ is

z − u(x, y) or z − u(x, ys), and the minimal polynomial of z over K(ζp) is zp −H(y). And

L′ = Ri
∼= K[x, y, z]/Id(f(x), g(y), h(x, y, z)) ∼= K[y, z]/Id(g(y), zp − H(y)).

5.2 Expressing a primitive element by radical

Now we come to consider expressing the fixed primitive element as a polynomial in the

Lagrange resolvent and the fixed primitive p-th root of unity. The target problem is “how

to obtain the polynomial x − P (y, z) from m(x), g(y) and h(x, y, z)”. Here, we present a

method based on elimination ideal computation. We assume that a primitive p-th root of

unity is already found, and use the same notations as in §5.1. Then,

K(β, ζp) ∼= K[x, y, z]/Id(m(x), g(y), h(x, y, z)).
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The polynomials m(x), g(y) and h(x, y, z) form the reduced Gröbner basis of the ideal

Id(m(x), g(y), h(x, y, z)) with respect to the lexicographic ordering x ≺ y ≺ z as they are.

Since x can be expressed as a polynomial in y and z, we have the following by §2.4.

Theorem 17

There exists an element x − P (y, z) in the Gröbner basis of the ideal Id(f(x) , g(y)

, h(x, y, z)) with respect to a block order {y, z} ≺≺ x.

Remark 8

On the Gröbner basis computation, we noted the following:

(1) In this method, we may stop the procedure of Gröbner basis computation when a

polynomial r(x, y, z) which is linear with respect to x appears in the procedure. Then, the

efficiency of this method shall be improved, though the shape of the result differs from that

obtained through complete computation.

(2) With respect to the order y ≺ z ≺ x, g(y) and zp − H(y) appear in the Gröbner

basis of Id(f(x), g(y), h(x, y, z)). Thus, for the computation of Gröbner basis we use the

set {m(y), g(y), zp − H(y), h(x, y, z)} as the input. (In this case, the whole computation

becomes very similar to the procedure described in Remark 9.)

Remark 9

We can obtain a radical representation by GCD of m(x) and h(x, y, z) over the field

K(ζp, u(β, ζp)) ∼= K[y, z]/Id(g(y), zp −H(y)). Since m(x), g(y), h(x, y, z) generate a maxi-

mal ideal, m(x) and h(x, y, z) have a common factor. As m(x) is square-free, the common

factor is a linear factor. We can compute GCD by Euclid’s algorithm using pseudo di-

vision. However, in general, this method gives the result like B(y, z)x − C(y, z), where

B,C are polynomials in y, z over K. (The pseudo-GCD computation corresponds to that

of S-polynomial in the Gröbner basis computation.) And intermediate coefficient swell

occurring in the pseudo-GCD becomes a serious issue.

5.3 On strong representation

In our setting, a primitive element β′ of K is represented by radicals over Q, and ζp is

also represented by radicals over Q. By the method in §5.2, we compute a strong radical

representation of β over K, that is, an expression in terms of radicals of polynomials in β′

and ζp, and finally by substituting β′ and ζp with their strong radical representations over

Q, we obtain a radical representation of β over Q. From 〈4〉 in §2.1, we have:

Lemma 18

Assume that Q(β′)(= K) and Q(ζp) are linearly disjoint. (This is equivalent to the condi-

tion that g0 = g.) Then, the radical representation of β becomes a strong representation

for any pair of strong radical representations of ζp over Q and β′ over Q.
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When Q(β′) and Q(ζp) are not linearly disjoint, there may be some terms in radical rep-

resentations of β′ and ζp such that their evaluations depend on each other. In this case,

additional procedures are required. We will discuss this in the next section.

6 Radical Representation of Polynomial Roots

We assume the setting in §4 and consider how we compute a radical representation of

each primitive element βi. Since our final aim is to obtain one radical representation of a

root of f(x), it suffices to compute radical representation of each primitive element βi for

i = 1, . . . , r′, if there is a contractible root in Kr′ . So, first we will give a concrete procedure

for the general case, where there is no contractible root, and then we will comment the

contractible case. Here, we assume that every primitive element βi is already computed. At

each step i, since primitive element βi+1 corresponds to cyclic extension, we apply methods

in §5. To compute a strong radical representation, we must replace the ground field Q with

a certain cyclotomic field.

6.1 Cyclotomic field corresponding to a polynomial

First, we define the following cyclotomic field determined by the input polynomial f .

Definition 19

Let pi = [Ki : Ki−1] for i = 1, . . . , r and let q1, . . . , qs be distinct odd primes among

p1, . . . , pr. Then Kf (ζq1 , . . . , ζqs) is a field over which every arithmetic operation for radical

representation can be done, and we call it the extended splitting field of f and denote it by

Lf . Moreover, we call Q(ζq1 , . . . , ζqs) the cyclotomic field corresponding to f and denote

it by Cf .

A strong radical representation of each ζqi can be computed efficiently by taking advantage

of the special properties of primitive roots of unity. (See [2].) Thus, we assume that strong

radical representations of ζqi ’s are already computed. By Lemma 9, there is no restriction

on the choice of radical representations of ζqi ’s.

We assign new variables z1, . . . , zs to ζq1 , . . . , ζqs . Set Z = {z1, . . . , zs}. Since Q(ζqi) is

linearly disjoint to Q(ζq1 , . . . , ζqi−1 , ζqi+1 , . . . , ζqs
) for i = 1, . . . , s, Cf is expressed as

Cf
∼= Q[Z]/Id(g0,1(z1), . . . , g0,s(zs)),

where each g0,i is the minimal polynomial of ζqi over Q and g0,i = (zqi

i − 1)/(zi − 1).

Moreover, Lf is expressed as

Lf
∼= Q[Y,Z]/Id(f1, . . . , ft, g1, . . . , gs),
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where Y = {y1, . . . , yt} and each gi ∈ Q[Y, z1, . . . , zi] is the minimal polynomial of ζqi
over

Kf (ζq1 , . . . , ζqi−1) = Q[Y, z1, . . . , zi−1]/Id(f1, . . . , ft, g1, . . . , gi−1). Each polynomial gi can

be obtained by factoring g0,i over Kf (ζq1 , . . . , ζqi−1).

6.2 Radical representation of relative primitive elements

We describe the computation at the i-th step, 1 ≤ i ≤ r. Let Lj = Kj(ζq1 , . . . , ζqs
)

for 1 ≤ j ≤ r, and L0 = Cf , and assign new variables u1, . . . , ui to β1, . . . , βi, that is,

uj − βj(Y ) = 0 for j = 1, . . . , i. Set Uj = {u1, . . . , uj} for j ≤ r. Since [Ki : Ki−1] is a

prime pi, [Li : Li−1] = pi or Li = Li−1 holds. In more detail, we have

Lemma 20

(1) Lr = Lf is a Galois extension over Q and so over L0.

(2) The Galois group of Lr/Li coincides with the stabilizer of L0 in Gi.

(3) The element βi is a primitive element of Li over Li−1.

(4) If Li−1 6= Li, then the Galois group of Li/Li−1 is isomorphic to the Galois group of

Ki/Ki−1 and so the factor group Gi−1/Gi.

We can determine whether Li = Li−1 by elimination ideal computation. With respect

to a block order Z ≺≺ Ui ≺≺ Y , the reduced Gröbner basis, say GBi, of the ideal

Ji = Id(u1 − β1, . . . , ui − βi, g1, . . . , gs, f1, . . . , ft) has the following property. (For the

proof, see §4.)

Lemma 21

In GBi there is a polynomial Pj in variables Uj , Z which is monic with respect to uj for

j = 1, . . . , i. Moreover, GBi ∩ Q[Ui, Z] = {g0,1, . . . , g0,s, P1, . . . , Pi} and

Li
∼= Q[Ui, Z]/Id(g0,1, . . . , g0,s, P1, . . . , Pi).

Then, Li = Li−1 if and only if Pi is linear with respect to ui. And if Pi is linear

with respect to ui, then ui, i.e. the algebraic number βi, is expressed as a polynomial

in β1, . . . , βi−1 and ζq1 , . . . , ζqs . From this expression, a radical representation of βi is

obtained. Therefore we have only to consider the case where [Li : Li−1] = pi holds.

By Lemma 20, if [Li : Li−1] = pi, the set of all conjugates of βi in Ki/Ki−1 coincides

with that in Li/Li−1. Thus, the Lagrange resolvent is computed easily and represented by

a polynomial Vi(Z, Y ). We assign a variable vi to Vi(Z, Y ), i.e. vi − Vi(Z, Y ) = 0.

Consider the ideal J̃i generated by its Gröbner basis GB∗
i = {u1−β1, . . . , ui−βi, vi−Vi,

f1, . . . , ft, g1, . . . , gs} in the polynomial ring Q[Y,Z, Ui, vi] with respect to the lexicographic

order {Y ≺ Z ≺ Ui ≺ vi}. The ideal J̃i is a maximal ideal whose residue class ring is

equivalent to Lf . By changing the order to a block order {Z ≺≺ {Ui−1 ≺ vi ≺ ui} ≺≺ Y },
we can obtain the polynomial expression of ui in u1, . . . , ui−1, v, z1, . . . , zs. Moreover, the
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minimal polynomial of vi over Li−1 is of form vpi

i −Qj(Ui−1, Z) and Qj is computed directly

from the normal form of V
pj

j with respect to GB∗
i . (See §5.)

Thus, at this step, we have a strong radical representation of the primitive element βi by

the previous ones βi−1, . . . , β1 and the fixed roots of unity. At the final step i = r, we have

a strong radical representation of the final primitive element βr from which strong radical

representations of roots are derived. In more detail, by substituting each βi with its strong

radical representation by βi−1, . . . , β1 and the fixed primitive pi-th root from i = r to 1

repeatedly, we have a strong radical representation of βr over Cf , i.e. a representation of

βr in terms of radicals over Q[Z]/Id(g0,1, . . . , g0,s). Since each zi is defined by an arbitrary

root of g0,i, we can use any primitive pi-th root of unity as the value of ζqi . Thus, by

using the already computed strong radical representation for each ζqi , we finally obtained

a strong radical representation of βr.

We give another direct description of the whole procedure which is equivalent to the

above. New variables v1, . . . , vr correspond to algebraic numbers γ1, . . . , γs such that Li =

Li−1(γi) and γpi belongs to Li−1 for each i, 1 ≤ i ≤ s. We set V = {v1, . . . , vr}. Then, we

express every βi as a polynomial in ζq1 , . . . , ζqs and γ1, . . . , γs as follows:

Let I be an ideal in Q[Y,Z, U, V ] generated by its Gröbner basis {f1, . . . , ft, g1, . . . , gs,

u1−β1, . . . , ur −βr, v1−V1, . . . , vr −Vr} with respect to the lexicographic order {Y ≺ Z ≺
U ≺ V }. Then its Gröbner basis GB with respect to a block order {{Z ≺ V } ≺≺ {Y ≺ U}}
has the following property.

Lemma 22

For each j, 1 ≤ j ≤ r, there is a polynomial Rj in variables Vj−1, Z such that v
pj

j − Rj

belongs to GB, where Vj = {v1, . . . , vj}. Moreover, GB ∩ Q[V,Z] = {g0,1, . . . , g0,s, v
p1
1 −

R1, . . . , v
pr
r − Rr} and

Lf
∼= Q[V,Z]/Id(g0,1, . . . , g0,s, v

p1
1 − R1, . . . , v

pr
r − Rr).

Each vj , i.e. an algebraic number γj , is expressed by a pi-th root of Rj , and from the

polynomial Rr we can compute a strong radical representation of a root of f .

Contractible Case As a by-product in the step for constructing the subfield tower, we

recognize the case where some root, say αi, belongs to a proper subfield Kj . In this case,

we can replace the extended splitting field Lf with Kf (ζq1 , . . . , ζqs′ ), where q1, . . . , qs′ are

all distinct primes among p1, . . . , pj . By the same procedure as in the general case, we have

radical representations of the primitive elements β1, . . . , βj . Although βj is not a root of

f , a contractible root αi is expressed as a polynomial in β1, . . . , βj . From this, we have a

radical representation of a root of f .

Moreover, there is a case where any root of f(x) does not belong to any proper subfield

Kj , but some root αi, 1 ≤ i ≤ t, belongs to some proper subfield Lj = Kj(ζq1 , . . . , ζqs′ ).
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This case is checked by whether a polynomial in yi, Uj , Z linear with respect to yi appears

in the Gröbner basis or not. See Remark 7.

6.3 Improvements and comments

When the Galois group Kf is large, it is rather difficult to factorize g0,i’s. To execute

their factorizations efficiently, we propose the following improvements.

[Improvement A] Before factoring g0,i over Kf (ζq1 , . . . , ζqi−1), we factorize g0,i over a

certain proper subfield Kj = Q[y1, . . . , yj ]/ Id(f1, . . . , fi) for j < t or Kf (ζq1 , . . . , ζqj′ ) for

j′ < i− 1. Then it suffices to factorize any factor of the above factorization instead of g0,i

itself over Kf . This improvement works very well when there are strong algebraic relations

between Kf and Q(ζqi), in particular, when Kf contains Q(ζqi).

[Improvement B] In factorization of g0,i over Kf , we can replace the field Kf with a

smaller subfield K ′. Let N = [Kf : Q]. Since [Kf (ζqi) : Kf ] = [Q(ζqi) : Q(ζqi) ∩ Kf ] and

[Q(ζqi
) ∩ Kf : Q] is a common divisor of N and qi − 1, [Q(ζqi

) ∩ Kf : Q] is a divisor of

GCD(N, qi − 1) and deg(g0,i) ≥ (qi − 1)/GCD(N, qi − 1). So we first compute a divisor

M of qi − 1 such that GCD(N, qi − 1) divides M and GCD(N, (qi − 1)/M) = 1. Next, by

using the knowledge on the Galois group of Q(ζqi)/Q, we compute a primitive element θ of

a subfield K ′ of Q(ζqi) with extension degree M . (See §4.) Then, the minimal polynomial

of ζqi over Kf (θ) coincides with the minimal polynomial of ζqi over Q(θ). Thus, instead

of factoring g0,i over Kf , we factorize g0,i over Q(θ) and factorize, over Kf , the minimal

polynomial of θ over Q and then we obtain the representation of Kf (ζqi).

Finally, in this section we discuss two alternatives for the concrete procedures.

(1) Let ζq be a primitive q-th root of unity, where q =
∏s

i=1 qi. Since ζ
q/qi
q is a primitive

qi-th root of unity for each i, we can remove z1, . . . , zs by assigning a new variable z to

ζq. This succeeds in reducing the number of variables, however, it becomes very hard to

factorize the minimal polynomial of ζq over Kf . This fact can be seen in our experiment.

(2) We can give another procedure which seems quite natural with respect to the con-

struction. Each pi-th root is added to the subfield at each step, i.e. the following L̄i’s are

constructed: L̄0 = Q(ζp1), . . . , L̄i = L̄i−1(βi, ζpi+1) = Q(β1, . . . , βi, ζ1, . . . , ζpi+1). We set

L̄r = Lr. At each i-th step, we have to compute the minimal polynomial m̄i of βi over L̄i−1

and that ḡ0,i of ζpi over L̄i−1(βi). These are also obtained by algebraic factorization. m̄i is

an irreducible factor of Pi over Li−1 and ḡ0,i is also an irreducible factor of g0,i over Li−1.

In the computational point of view, the factorization of Pi over Li−1 is reduced to those of

ζp1 , . . . , ζpi−1 over Ki by basis-conversion techniques and vice versa. Thus we factorize g0,i

over several proper subfields of Lf . This method is a variant of the procedure proposed in

§6.2 with Improvement A.



J.JSSAC Vol. 9, No. 1, 2002 73

7 Experiment on Computers

Here, we report our experiments on computation of radical representation for actual

examples. In the previous sections, we showed the whole procedure consists of three parts;

(1) computing a composition series (2) computing the corresponding subfield tower, and

(3) computing radical representations. We implemented all three parts on Risa/Asir and

tested efficiency of proposed methods for a number of examples. Timing data is shown in

Appendix A. We note the splitting fields and Galois groups were computed by direct method

in [1]. The experiment shows that radical representation is executable for polynomials

whose splitting fields and Galois groups are computed by the direct method.

7.1 Algebraic factorization

Since we do not have an effective criterion for strong representation except Lemma 18,

we have to factorize the minimal polynomials g0,1, · · · , g0,s over Kf or its extensions. For

these factorizations, we can use an improved algebraic factorization using non-square-free

norm proposed in [1], and its further extension proposed by Noro & Yokoyama [20] based

on Encarnacion’s algorithm [9] for factorization over simple extension fields. Since these

two improvements work complementary, we can combine these effectively. By the former

improvement, we sometimes catch an intermediate decomposition of a given polynomial,

and by the latter improvement, we reduce unnecessary combinations of candidates for

irreducible factors of the polynomial.

Timing data for algebraic factorization (Table 1 in Appendix A) was, in principle,

obtained by the method using non-square-free norm. We remark that it took about 1 hour

to execute algebraic factorization for Example (19) and we could not obtain the result

for Example (26) within 1 hour. We applied the algorithm in [20] for Example (19), by

which the computing time decreased to 1/20. For Example (26) we obtained the result in

about 200 seconds by Improvement A. However, the part of factorizations of g0,i’s is still

time-consuming compared with basis-conversion parts.

The improvements for algebraic factorization proposed in §6.3 are based on the above

algebraic factoring algorithms. The effects of each improvement depend on the cases.

We comment on Improvement A briefly: If g0,i is factorized into its proper factors with

smaller degree, the total efficiency should be much improved. Moreover, if the degree of

irreducible factors of f over Ki is prime to [Kf : Ki], each irreducible factor of f over Ki

is also irreducible over Kf , that is, we do not have to factorize each factor over Kf . As

for Improvement B, we did not apply it in the experiment. This seems much suited for the

case where M is considerably small compared with N and qi − 1.
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7.2 Relative and absolutely primitive elements

From [2] and Table 2 in Appendix A, we can point out the following. (i) Relative

primitive elements can be obtained more easily than absolutely ones. (ii) Coefficients

of the minimal polynomials of relative primitive elements tend to be much smaller than

those of absolutely ones. (iii) Although a method using absolutely primitive elements

has a smaller number of variables, the computation of a polynomial expression of βi is

much more time-consuming. From these points, we conclude that methods using relative

primitive elements are superior to methods using absolutely ones. This behavior is very

similar to that of algebraic factorization, see [1].

7.3 Elimination ideal computation by basis-conversion techniques

As mensioned in Remark 2, there is a slight difference between finding necessary alge-

braic relations and elimination ideal computation by basis-conversion. But, as they have

the same mathematical basis and computational behavior, we focus on elimination ideal

computation by basis-conversion and we discuss which variant of basis-conversion is effi-

cient for the radical representation. Since each ideal appearing in the problem is given by

its Gröbner basis with respect to an admissible order, change-of-ordering algorithms are

much more efficient than direct application of Gröbner basis computation. (Timing data in

appendix was obtained by using the change-of-ordering algorithm in Risa/Asir.) There are

several studies about change-of-ordering algorithms, e.g. Faugère et al. [11], Faugère [10].

Among those, we used one described in Noro & Yokoyama [19] as the most suitable one

for the problem in our settings. Because the algorithm in [19] employs modular techniques

to avoid intermediate coefficient growth.

As reported in [2], since the degree of each minimal polynomial in examples is a small

prime, direct Gröbner basis computation with respect to a lexicographical order by an

algorithm based on trace-lifting, see Traverso [23], also worked well in the experiment.

However, even in these cases, the change-of-ordering algorithm employed here can compute

much more efficiently. Efficiency will be much improved by stopping the basis-conversion

when we obtain every necessary elements in the basis.

7.4 Radical representation of primitive roots of unity

We give a comment on radical representation of a primitive p-th root ζp of unity for

a prime p. Since the Galois group of Q(ζp) over Q is a cyclic group of order p − 1, we

can apply the general method for it, that is, we first compute a subfield tower, and so

on. Moreover, we can also apply methods in §5 directly to it. By [2] it is proved that

the method derived from Equation (3) is the most efficient, if a radical representation of
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a primitive n-th root of unity for each n smaller than p is already known. Since radical

representations of primitive roots of unity are used as basic items for radical representation

for roots of general polynomials, these expressions must be filed as data. Hence, the shape

of their radical expressions is more important than the timing of their computation. This

should be analyzed in our future works.

8 Concluding remarks

By the direct method in [1] or the p-adic approach in [26], exact permutation repre-

sentations of Galois groups are computed efficiently. Aiming at efficient computation of

radical representation from the outputs of the direct method, we gave further discussion on

the subject and proposed a concrete method. We examined the efficiency of the method by

experiments with a number of examples. The experiment shows that radical representation

is executable for polynomials whose splitting fields and Galois groups are computed by the

direct method. That is, combination of the presented methods with the direct method and

efficient group theoretical methods for composition series, gives a practical procedure for

the radical representation of roots of polynomials. Since the presented method follows the

well-known abstract procedure for radical representation, we may call the method a direct

method for radical representation.

To improve the efficiency of the direct method, the technique of p-adic approach seems

very useful. Because, as we can guess the shape of necessary algebraic relations, we can

apply modular techniques, where we can compute the results in the finite field GF (p) for

some prime and lift them by Hensel procedure. This will be done in our further study.

Finally, we list up additional problems for further study: (1) By the presented direct

method, radical representations of several polynomials were obtained. However, their ex-

pressions are too complicated to recognize what these expressions imply. (See Appendix

B.) Thus, the problem to simplify expressions arises, or we have to consider what are

preferable expressions (cf. [29]). (2) By using arguments in [15], it seems possible to give a

bound of coefficients of radical representations in terms of the magnitude of coefficients and

the degree of the input polynomial. If we have adequate bounds, we can apply modular

techniques very efficiently.
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Appendix A Timing data

Timings, given in seconds, were measured on a SUN4-20/61, where garbage collection

time is excluded. As samples, we took the following 10 solvable polynomials. These but

Example (4′) are quoted from Anai et al. (1994a) and the same indices are assigned to

these polynomials. Example (4′) is given by Professor G. Fee in his Computer Challenge

Problems 1) whose Galois group is isomorphic to Example (4) in Anai et al. (1994a).

(4′) x5 − 5x3 + 5x − 5
(10) x6 + 9x4 − 4x2 − 4
(11) x6 + x3 + 7
(12) x6 − 3x4 + 1
(15) x6 − 2x3 − 2

(17) x6 + x4 − 8
(19) x6 + x4 − x2 + 5x − 5
(24) x7 + 7x3 + 7x2 + 7x − 1
(25) x7 − 14x5 + 56x3 − 56x + 22
(26) x7 − 2

Table 1 shows the timings to compute relative primitive elements and their strong

radical representations, and Table 2 shows the comparison of the method with relative

primitive elements and the method with absolutely ones.

Here, we use the following abbreviations: In Table 1, |G| denotes the order of the

Galois group, D denotes the extension degree of each subfield over its previous subfield, S

denotes the timing for computing each subfield, R denotes the timing for a strong radical

representation of each primitive element, and af denotes the timing for computing Cf . A

contractible root was found at the step marked by “.”. In this case we do not have to

proceed further. And “*” means that contraction occurs at the extension. Moreover “ 1) ”

means that we used the extension proposed by Noro & Yokoyama (1996), and “2) ” means

that we used Improvement A. (See §6.3.) In Table 2, |G|, D, S and R are the same as in

Table 1. Sa denotes the timing to construct absolutely primitive elements and Ra denotes

the timing for a strong radical representation of each absolutely primitive element.

Appendix B Result of (4′)

Subfields : For Example (4′), Kf is obtained by adding two roots a, b of (4′) to Q:

1) 14 problems to challenge computer algebra systems are proposed in Computer Challenge Problems
which was posted to Internet News Group: sci.math.symbolic on 7 Jun, 1994.
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|G| D S R

(4′) 20 2 1.48 * 0.07
F20 2 1.54 1.70

5 0.67 3.36

af 7.15

(10) 12 3 0.04 0.12
A4 2 0.03 0.07

2 0.02 0.06

af 0.50

(11) 18 3 0.12 0.16
3.S3 2 0.11 * 0.10

3 0.06 0.28

af 1.73

(12) 24 3 0.16 0.20
2.A4 2 0.06 0.07

2 . 0.07 0.07
2 (0.06) (0.08)

af 3.57

(15) 36 2 0.77 0.07
3ˆ2.2ˆ2 3 0.28 * 0.06

2 0.08 0.23
3 0.05 0.21

af 10.59

|G| D S R

(17) 48 2 1.22 0.10
2.S4 3 0.14 0.18

2 0.10 0.13
2 . 0.09 0.13
2 (0.11) (0.17)

af 61.16

(19) 72 2 23.74 0.15
3ˆ2.D4 2 4.91 0.33

2 7.67 3.03
3 3.69 4.13
3 7.89 7.33

af 1)171.00

(24) 14 2 0.46 * 1.32
D7 7 0.35 14.81

af 14.70

(25) 21 3 1.46 * 2.19
F21 7 1.18 19.93

af 40.5

(26) 42 2 0.71 * 0.22
F42 3 0.19 * 0.50

7 0.14 13.63

af 2)207.20

Table 1: Time for radical representation.

D S Sa R Ra

(4′) 2 1.48 1.25 0.07 0.50
2 1.54 1.29 1.70 1.62
5 0.67 0.33 3.36 17.53

(10) 3 0.04 0.04 0.12 0.27
2 0.03 0.03 0.07 0.03
2 0.02 0.02 0.06 0.04

(11) 3 0.12 0.08 0.16 0.08
2 0.11 0.07 0.10 0.07
3 0.06 0.07 0.28 0.28

(12) 3 0.16 0.13 0.20 0.26
2 0.06 0.05 0.07 0.04
2 0.07 0.03 0.07 0.04
2 0.06 0.09 0.08 0.12

(15) 2 0.77 0.68 0.07 0.04
3 0.28 0.21 0.06 0.10
2 0.08 0.06 0.23 0.49
3 0.05 0.04 0.21 0.28

D S Sa R Ra

(17) 2 1.22 1.12 0.10 0.08
3 0.14 0.09 0.18 0.25
2 0.10 0.04 0.13 0.06
2 0.09 0.13 0.13 0.21
2 0.11 4.24 0.17 1.52

(19) 2 23.74 24.06 0.15 0.13
2 4.91 5.00 0.33 0.29
2 7.67 20.44 3.03 8.52
3 3.69 36.45 4.13 24.45
3 7.89 0.72 7.33 7.13

(24) 2 0.46 0.51 1.32 0.59
7 0.35 0.52 14.81 237.85

(25) 3 1.46 1.47 2.19 34.76
7 1.18 1.58 19.93 364.88

(26) 2 0.71 0.79 0.22 0.36
3 0.19 0.22 0.50 0.51
7 0.14 0.07 13.63 17.67

Table 2: Comparison of relative primitive elements and absolutely ones
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Kf
∼= Q[a, b]/Id(a5 − 5a3 + 5a − 5, a4 + ba3 + (b2 − 5)a2 + (b3 − 5b)a + b4 − 5b2 + 5).

There are two subfields corresponding to the composition series of the Galois group between

Q and Kf . A primitive element βi of Ki over Ki−1 = Q(β1, · · · , βi−1) and its minimal

polynomial mi over Ki−1 for each i (i = 1, 2, 3) are as follows:

β1 = 1
27

((20b3 − 50b2 − 60b + 100)a3 + (−50b3 + 20b2 + 150b − 40)a2 + (−60b3 + 150b2+
180b − 300)a + 100b3 − 40b2 − 300b − 550),

β2 = 10ba4 + (−5b2 + 20)a3 + (15b3 − 75b)a2 + (25b2 − 70)a − 20b3 + 70b + 25,
β3 = −a + b,

m1 = u2
1 + 50u1 + 500,

m2 = 2u2
2 − 1155u1 − 15750,

m3 = −2u5
3 − u1u

3
3 + (5u1 + 50)u3 + 2u2.

Radical Representations : For each i, ui and vi are assigned to βi and the correspond-
ing Lagrange resolvent, respectively. z1 is assigned to the fixed primitive 5-th root of unity,
whose minimal polynomial over Kf is

g1(z1; a, b) = 21z2
1 + ((2b3 − 5b2 − 6b + 10)a3 + (−5b3 + 2b2 + 15b − 4)a2+

(−6b3 + 15b2 + 18b − 30)a + 10b3 − 4b2 − 30b + 8)z1 + 21.

Then the results are as follows:

u1 = 10z3
1 + 10z2

1 − 20,
u2 = 1

2
v2,

u3 = 1
31250

(((3z3
1 + 3z2

1 + 5)u2 + 50z3
1 + 50z11 + 25)v4 + 6250v),

v2 =
p

23100z3
1 + 23100z2

1 − 14700,

v3 = 5
q

1
2
(3125v2 − 78125z3

1 − 234375z2
1 − 312500z1 − 156250),

a = 1
312500

(((7v2 − 500)v4
1 − 25000v1)z

3
1 + ((−11v2 − 250)v4

1 + 12500v1)z
2
1 + ((11v2−

250)v4
1 − 12500v1)z1 + (−7v2 − 500)v4

1 − 37500v1),

b = 1
156250

(11v2v
4
1 − 12500v1)z

3
1 + ((2v2 − 125)v4

1 + 6250v1)z
2
1 + ((11/2v2 + 125)v4

1

−6250v1)z1 + (9v2 − 125)v4
1 + 12500v1.
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