
数式処理 J.JSSAC (2003)

Vol. 10, No. 1, pp. 34 - 40

特集 “Quantifier Elimination”

SyNRAC: A New Maple Package for Supporting Design

and Analysis in Engineering

Hitoshi Yanami ∗

Fujitsu Laboratories Ltd.

Hirokazu Anai †

Fujitsu Laboratories Ltd.

Abstract

We present SyNRAC, a symbolic computation package for solving real algebraic con-
straints. Algorithms in SyNRAC are implemented on the Maple software and they are ex-
pected to provide many users with symbolic methods of dealing with practical problems in
engineering. SyNRAC is to be aimed to support symbolic, numerical, and symbolic-numeric
computation. Until now we have emphasized on symbolic methods and implemented two
types of special QE algorithms. Our project’s outline, the present state of SyNRAC, and
our future plan are stated.

1 A Brief History of QE

Quantifier elimination (QE) is a procedure that takes a first-order formula as input and

returns a quantifier-free formula equivalent to the input. The history of QE dates back

to the 1930s when Tarski proved the existence of a decision procedure for theory of real

closed fields. Tarski also presented the first quantifier elimination algorithm, which was

later modified by Seidenberg and is now known as the Seidenberg-Tarski algorithm [3, 10].

The algorithm requires too much computation, far from handling practical problems.

In 1975 Collins [4, 5] achieved a historic breakthrough in QE. He provided a new decision

method based on his concept of cylindrical algebraic decomposition (CAD). The complexity

of the CAD algorithm is doubly exponential in the number of quantified variables, which

greatly improved the Seidenberg-Tarski algorithm. Though Collins’s CAD method still

could solve only very simple problems, it stimulated researchers to study this area.

In the 1980s many revised algorithms and related research papers were presented. Some

groups of people started implementing QE algorithms around 1990. The QEPCAD and

∗yanami@flab.fujitsu.co.jp
†anai@jp.fujitsu.com

c© 2003 Japan Society for Symbolic and Algebraic Computation

J.JSSAC Vol. 10, No. 1, 2003 35

REDLOG packages have been known as pioneers and by far the famous ones; QE algorithms

were also implemented on Mathematica and on Risa/Asir. For QEPCAD and REDLOG,

see the respective articles in the present issue. Among the known general QE methods,

the partial-CAD-based algorithm is known as the most organized and efficient one; the

algorithm has been implemented in the QEPCAD package. In spite of the quality of the

algorithm, its worst-case computation has still doubly exponential behavior.

This fact promoted another point of view in studying QE and new approaches—QE

algorithms that target only a certain type of formulas—were attempted in the 1990s. The

method, known as the special QE method, enables us to make use of typical features of

the prescribed formulas to reduce its computational complexity. With the help of these

theoretical improvement as well as the year-by-year growth in hardware power such as

CPU performance and memory size, various types of engineering problems can now be

dealt with in reasonable time and space.

2 The SyNRAC Project

We have been developing a toolbox including special QE methods on the Maple soft-

ware. The toolbox has been named SyNRAC, which stands for a Symbolic-Numeric toolbox

for Real Algebraic Constraints. The SyNRAC project started late last year after some suc-

cessful results in solving practical engineering problems were obtained by using symbolic

computation methods.

The reasons why we have chosen Maple as a platform are: 1) Though Maple has been

very popular among researchers in engineering, there are no QE tools available; 2) Maple

provides us with a stable and friendly development environment; 3) Maple packages are

automatically incorporated into MATLAB, which is widely used in engineering, via its

“Symbolic Math Toolbox.”

Based on SyNRAC we are planning to develop some toolboxes on MATLAB tailored

for specific application fields such as robust control design. Those are expected to be novel

tools and would provide engineers with new systematic design procedures using symbolic,

numerical, and symbolic-numeric methods.

3 The Present State of SyNRAC

It is just more than half a year since our SyNRAC project started. We are currently

focusing on some known special QE algorithms, which are specialized to particular types

of input formulas. Two sorts of special QE algorithms have been implemented so far and

are now available in SyNRAC; one is a special QE algorithm for the sign definite condition

(SDC) and the other is a special QE algorithm for linear formulas. These types of formulas

36 数式処理 第 10 巻 第 1 号 2003

cover a wide range of problems and the algorithms implemented have enough efficiency to

solve various practical problems.

These algorithms are each built around respective techniques. The former is based on

the Sturm-Habicht sequence; the latter on virtual substitution. We briefly explain them in

the next two subsections. Details of these algorithms are described in Anai and Yanami

[2].

3.1 Special QE Using the Sturm-Habicht Sequence

The Sturm-Habicht sequence associated to a polynomial in R[x] is, in a word, a revised

version of the well-known Sturm sequence. See [8] for the definition of the Sturm-Habicht

sequence. The Sturm-Habicht sequence with respect to f(x) ∈ R[x] is a list of polynomials

and is used for counting the number of real zeros of f in a given interval. The number of

zeros of an interval, say, between a and b is calculated as follows: (1) Substitute a for x

in the Sturm-Habicht sequence and count the number of sign changes over the resulting

sequence; denote it by Na; (2) Do the same thing for the other endpoint b to obtain Nb;

(3) The answer is the absolute value |Na − Nb| of the difference of these two numbers.

González-Vega [7] used the sequence to eliminate the quantifier in a first-order formula

of the form ∀x, f(x) > 0, where f(x) ∈ R[x]. Anai and Hara [1] examined a similar type

of formulas

∀x > 0, f(x) > 0 ,

and called this condition the sign definite condition (SDC). They also showed that a vast

range of problems arising in engineering can be reduced to SDC and succeeded in solving

them symbolically. It is easy to see that SDC is equivalent to the condition that f has

no real zeros in the interval (0,+∞), plus f takes a positive value for some x > 0. By

considering all the possible sign changes over the Sturm-Habicht sequence, we obtain an

equivalent formula without the quantified variable x.

3.2 Special QE by Virtual Substitution

The other QE algorithm implemented in SyNRAC deals with linear formulas by virtual

substitution. A formula is called linear when every atomic subformula in it is linear with

respect to its quantified variables, i.e., it is of the form

a0 + a1x1 + · · · + anxn ρ 0 ,

where x1, ..., xn are the quantified variables, each term ai, 0 ≤ i ≤ n, contains no quantified

variables, and ρ ∈ {=, 6=,≤, <}.
In 1988 Weispfenning [11] proposed a QE algorithm by virtual substitution for linear

formulas. The main idea for eliminating x in a formula ∃xϕ(x) is to find a suitable finite

J.JSSAC Vol. 10, No. 1, 2003 37

set of terms S = {a1, . . . , an} each term of which contains no x, so that the formula

and ϕ(x//a1) ∨ · · · ∨ ϕ(x//an) are equivalent. Here ϕ(x//ai) is the formula obtained by a

modified substitution.1)

A theorem in [11] says that when the input is a linear formula, one can find S, called

an elimination set, satisfying the above condition, and moreover, the resulting formula

∨s∈Sϕ(x//s) is again linear. This fact, as well as the equivalence

∀xϕ(x)⇐⇒¬(∃x¬ϕ(x))

with ϕ quantifier-free,2) enables us to eliminate all the quantifiers in a given linear formula;

remove them one by one from inside.

Loos and Weispfenning [9] have found elimination sets smaller than in [11], which

promote to increase algorithm’s efficiency. We have implemented the algorithms in both

papers.

3.3 Simplification

During a QE algorithm formulas tend to grow rapidly due to automatic formula rewrit-

ing. They are usually getting deeply nested and highly redundant. Thus simplification,

a procedure that makes the quantifier-free part of a formula simpler, is important. Com-

bined with simplification methods, a QE algorithm not only returns a readable output

formula, but achieves more computational efficiency. There are many research papers on

simplification; see [6, 7] for possible simplification methods.

The difficulty in simplifying formulas lies in deciding what formulas are regarded as

simple and concise. Such standards vary. Each simplification method is based on a certain

standard, and distinct simplification methods might be mutually incompatible.

In SyNRAC only primitive simplification methods have been implemented. Implemen-

tation of more complicated ones is ongoing, which is our primary concern. After that it is

required to coordinate various simplification techniques to enhance efficiency.

4 Examples of Computation

In this section we show some computational examples3) to illustrate how algorithms in SyN-

RAC work. Figure 1 shows a Maple worksheet in which we have executed some command

in SyNRAC. Let us explain them in order.

1)There is a procedure assigning the expression ϕ(x/ai) obtained from ϕ by substituting t for x a formula
equivalent to it. We denote the resulting formula by ϕ(x//ai).

2)The negation ‘¬’ that precedes a quantifier-free formula can be easily eliminated if required; use De
Morgan’s law and rewrite the atomic subformulas.

3)All computations were executed on a Pentium III 1.0 GHz processor.

38 数式処理 第 10 巻 第 1 号 2003

synrac_display.eps

Figure 1: Examples of QE commands in SyNRAC

We load the next packages:

> read "synrac"; with(combinat);

First we solve the QE problem ∀x > 0, x2 + a1x + a0 > 0:

> qe_sdc(x^2+a1*x+a0,x);

-a0 < 0 and a1 < 0 and -4*a0+a1^2 < 0 or

-a0 < 0 and -a1 < 0 and -4*a0+a1^2 < 0 or

-a0 < 0 and -a1 < 0 and (-4*a0+a1^2) &= 0 or

-a0 < 0 and -a1 < 0 and 4*a0-a1^2 < 0 or

a0 &= 0 and -a1 < 0 or

a0 &= 0 and a1 &= 0 or

-a0 < 0 and a1 &= 0

time = 0.02, bytes = 123614

Note that the symbol &= is defined as equality.4) Next we solve the existential linear QE
problem ∃x∃y(y > 2x + 3 ∧ x > 0 ∧ y < s):

> qe_lin([x,y], y>2*x+3 and x>0 and y<s);

4)As for the usual =, it tests object equality of the Maple representations of the expressions, which is not
the same as we expect.

J.JSSAC Vol. 10, No. 1, 2003 39

-1/2*s < -3/2

time = 0.03, bytes = 144686

Finally we show the examples of decision problems for both commands:

> qe_sdc(x^5-x^2+3*x-9,x);

false

time = 1.11, bytes = 8774262

> qe_lin([x,y], y<2*x+2 and y<=-3*x+12 and y>(1/3)*x+5);

true

A sample point: [x, y], [52/25, 144/25]

time = 0.03, bytes = 155078

5 Future Work

We have presented our SyNRAC project and the algorithms now available in SyNRAC.

Our project is currently under development and there is still a considerable way to go until

the latest techniques in real quantifier elimination are implemented.

We are continually improving the efficiency of implemented algorithms and are going to

implement other algorithms—including numerical and symbolic-numeric algorithms—for

solving real algebraic constraints into SyNRAC. We also plan to develop some toolboxes

tailored for specific applications such as parametric robust control toolbox based on SyN-

RAC.

Being based on the Maple software, we believe, gives our toolbox a great advantage.

In order to make our system applicable to the Maple users who are interested in but not

familiar with symbolic computation methods, we are going to incorporate SyNRAC into

MATLAB and implement interfaces to modeling formulas and sophisticated visualization

facility of feasible parameter regions in a parameter space.

References

[1] H. Anai and S. Hara. Fixed-structure robust controller synthesis based on sign definite

condition by a special quantifier elimination. In Proceedings of American Control

Conference 2000, pages 1312–1316, 2000.

[2] H. Anai and H. Yanami. SyNRAC: A maple-package for solving real algebraic con-

straints. In Proceedings of the International Workshop on Computer Algebra Systems

and Their Applications: CASA’2003, P.M.A. Sloot et al.(ICCS 2003) editors, volume

2657 of LNCS. Springer-Verlag, 2003.

40 数式処理 第 10 巻 第 1 号 2003

[3] A. Seidenberg. A new decision method for elementary algebra. Annals of Math,

60:365–374, 1954.

[4] G. E. Collins. Quantifier elimination for the elementary theory of real closed fields

by cylindrical algebraic decomposition. In H. Brakhage, editor, Automata Theory and

Formal Languages. 2nd GI Conference, volume 33 of Lecture Notes in Computer Sci-

ence, pages 134–183. Gesellschaft für Informatik, Springer-Verlag, Berlin, Heidelberg,

New York, 1975.

[5] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier

elimination. Journal of Symbolic Computation, 12(3):299–328, Sept. 1991.

[6] A. Dolzmann and T. Sturm. Simplification of quantifier-free formulae over ordered

fields. Journal of Symbolic Computation, 24(2):209–231, Aug. 1997.

[7] L. González-Vega. A combinatorial algorithm solving some quantifier elimination prob-

lems. In B. Caviness and J. Johnson, editors, Quantifier Elimination and Cylindrical

Algebraic Decomposition, Texts and monographs in symbolic computation, pages 365–

375. Springer-Verlag, 1998.

[8] L. González-Vega, H. Lombardi, T. Recio, and M.-F. Roy:. Sturm-habicht sequence.

In Proceedings of ISSAC’89, pages 136–146, Portland, 1989. ACM Press.

[9] R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer

Journal, 36(5):450–462, 1993. Special issue on computational quantifier elimination.

[10] A. Tarski. A decision method for elementary algebra and geometry. University of

California Press, Berkeley, 1951. (2nd edition, revised.)

[11] V. Weispfenning. The complexity of linear problems in fields. Journal of Symbolic

Computation, 5(1–2):3–27, Feb.–Apr. 1988.

logo_A_mono.eps

	A Brief History of QE
	The SyNRACK Project
	The Present State of SyNRAC
	Special QE Using the Sturm-Habicht Sequence
	Special QE by Virtual Substitution
	Simplification

	Examples of Computation
	Future Work

