
数式処理 J.JSSAC (2004)

Vol. 10, No. 4, pp. 12 - 23

特集「大会発表論文」

On the Framework of Web-based Problem Solving

Environments

K. Li, M. Sakai, Y. Morizane, M. Kono, M.-T. Noda∗

Ehime University

(Received 2003/9/30 Revised 2004/1/24)

Abstract

The first design of Lupin, a layered framework of Web-based, common Problem Solving
Environments (PSEs) is proposed and discussed. The idea of invoking Web technologies
such as the emerging Web services for Lupin’s approach; the conception of mathematical
Web services and the implementation of Lupin based on the conception are briefly consid-
ered. A proof-of-concept system addressed by the combination of the current Web service
protocols, MathML, Computer Algebra Systems (CASs), interactive math and the relevant
XML technologies is also presented to check out the feasibility and disadvantages.

1 Introduction

The increasing diversity in scientific and engineering computation is strongly motivat-

ing the research of powerful Problem Solving Environments (PSEs) [3, 2, 17]. As complex

software systems, the traditional PSEs are monolithic. The main objective of their design-

ers is to provide a solution to a specific problem rather than identify common function

and build a common PSE platform. This situation results largely a high-cost, heavy-coded

ad hoc procedure that lacks of flexibility, portability and generality on PSE construction.

Due to this, it is believed that the network-centric, interoperation-enabled common PSE

mechanism that exploits the existing hardware and software resources needs to be con-

sidered. There are many notable works have been done to put forward PSE technologies

on this way, most of them focus on the mathematical software integration that enables

the interoperation over networks [1, 4, 5, 6]; while few of them aim at the sophisticated

framework that supports the whole lifecycle of PSE construction. Although PSE technol-

ogy is improving quickly, there are still lack of significant approaches that are, not only
∗{likai,masato,morizane,kono,noda}@hpc.cs.ehime-u.ac.jp

c© 2004 Japan Society for Symbolic and Algebraic Computation

J.JSSAC Vol. 10, No. 4, 2004 13

really language-, vendor- and platform neutral that truly address the large-scaled, seam-

less integration; but also simple, easy-to-use, and widely supported by the whole academic

community. Obviously, much work is still ahead before achieving a common fundamental

network-centric, distributed mechanism for the easy-but-efficient PSE construction.

Internet/Web is changing the way of processing information; it is also expected to play

the role of PSE platform and to facilitate the mechanism of PSEs creation. In recent years,

XML and its compliant Web services [7] are enabling applications discovery, registration,

and invocation over the Internet. Hence we predicate that it’s the time to consider the

mechanism of PSEs to be Web-based and truly support the “cheap and effective” compu-

tation by enabling the problem solver’s portability, reusability and search-ability. Towards

this end, Lupin is our ongoing research subject in Ehime University, Japan that aims at:

• Establishing a Web-based mechanism and framework that allows easy and systematic

creation and construction of computational PSEs.

• Exploiting the standard Web technologies to support the infrastructure.

• Implementing a prototype to demonstrate the feasibility.

In this paper, a common framework of Web-based computational PSEs is briefly given.

The layered approach enables the independent development and deployment of Internet

accessible PSE components (we call them Lupin services) by the service provider; and

actual PSE construction by the PSE provider on the base of Lupin service composition.

Based on the idea and concept of mathematical Web service, which is extended from e-

business-oriented Web service technology, a prototype is also implemented to demonstrate

the feasibility of Lupin architecture. This proof-of-concept system is realized by the ag-

gregation of Web service technologies such as SOAP [8], WSDL [9], UDDI [10], as well

as the mathematical protocol MathML, Computer Algebra Systems, interactive math [16]

and the relevant XML technology. Various discussions are carried out according to the

implementation and the improved proposals are also considered.

2 Lupin’s initial design and its conceptual architecture

2.1 Overview

As a Web-based approach, Lupin focus on the two key elements that a PSE contains: 1)

the user interface and 2) packages of computing kernels. In the Web-centric environment,

depending on target class of problems, the process of a PSE construction is essentially the

process of choosing and locating the certain computation kernels and binding them in an

appropriate flow. Based on this conception, following elements are considered to play the

critical roles under Lupin’s framework.

14 数式処理 第 10 巻 第 4 号 2004

• the computing kernels, that are called Lupin services, are Internet accessible.

• a mechanism of Lupin services discovery, which allows those geographically distributed

Lupin services to be correctly selected and located.

• a mechanism of Lupin service binding to enable the integration and interoperation.

• a mechanism of PSE composition due to a certain definition of selected Lupin services

and the corresponding interface generation for the end user.

In Figure 1, a layered stack is given. It shows that the Lupin service provider, the PSE

provider, and the end user are three key entities in Lupin’s framework and sit at different

layer respectively—that means all the operations such as Lupin service developing and

maintaining, PSE creation and generation as well as the use of PSE can be performed

independently, in every time, at everywhere on a global wide.

2.2 Architecture

Based on the stack, Lupin is designed to have a 3-block architecture to facilitate Web-

based PSEs construction. They are called the Lupin service generation mechanism, the

Lupin discovery mechanism and the PSE composition mechanism respectively. In a typical

scenario, Lupin service generation mechanism is considered to supply the service providers

various capabilities to develop and deploy the actual Lupin services that are Internet acces-

sible; and the other two parts are expected to facilitate the PSE providers to easily create

their PSEs by enabling the appropriate Lupin services discovery and integration, as well

as the PSEs user interface generation.

• Lupin service generation mechanism: Developed for particular purposes, Lupin services

are separately owned and located and are available to participate in other systems via

different interfaces. Lupin service generation mechanism aims to achieve the easy de-

velopment of Lupin service as a back-end, and its deployment to be Internet accessible.

Some contributions can be listed to support the distributed approaches either in en-

coding protocol level [1, 5], and program interface level [6, 4]. As an evolving standard

protocol, SOAP [8] is garnering a great deal of interest from industry to address the

XML messaging-based distributed computation.

• Lupin service discovery mechanism: It aims to organize Lupin services into a coherent

collection to enable discovery. This is regarded to be addressed by the recommender

system [3]. In a typical scenario, it accepts the query information from the PSE provider

via interfaced service browser, searches for the satisfied one according to the existing

service description, and returns the searching result for actual PSE composition. In the

J.JSSAC Vol. 10, No. 4, 2004 15

lupin_stack_ok.eps

lupin_arc_big_ok.eps

Figure 1: Lupin’s stack and its conceptual architecture

16 数式処理 第 10 巻 第 4 号 2004

Web environment, we believe that XML-based meta-data technologies can provide us

informative approaches towards the mathematical service description and discovery.

• PSE composition mechanism: After gathering all necessary Lupin services, the next

step should be how to organize them to work with each other interactively in an appro-

priate way. PSE composition mechanism is motivated to address this goal. In a general

paradigm, the PSE builder obtains the selected Lupin services as the “raw materials”

and organizes them according to the certain application, together with other technolo-

gies that support math on the web. Then, user interface (which can be a standalone

or the regular Web browser compliant) will be defined and generated as the client site

front-end.

3 Implementation

3.1 From Web service to mathematical service

Significant facilities should be considered to implement Lupin’s conceptual architecture

and to address the math on the web. Among many others, for example, MathML and

OpenMath are two fast-growing protocols that deal with the viewing and exchanging of

mathematical contents on the Web. Moreover, the list of MathML-/OpenMath-compliant

software, such as WebEQ and Mathplayer [16] which can support interactive math oper-

ations, is also increasing fast. They are considered to play the role of mathematical data

exchange in Lupin’s framework.

Mathematical contents delivery does not sufficiently cover Lupin’s distributed comput-

ing mechanism. Among the Web-based technologies, we focus on the term Web service,

which is an emerging e-business framework that can interface a collection of operations

that are network-accessible through XML messaging [7]. There are three main entities in

Web service architecture: the service provider, who hosts the actual service that is acces-

sible over the Web; the service requestor, an application that requires certain function to

be satisfied; and the service registry, a searchable mechanism for service description and

discovery. Some XML-based standards such as SOAP [8], WSDL [9], and UDDI [10] are

being developed to address its conceptual view.

Web services technology extends the application of Web from pure html-based contents

to programming language-, programming model-, and system software-neutral platform.

Hence it strongly motivates us to expand its features from the e-business domain, to a more

powerful approach of a new distributed computing mechanism, say, mathematical Web

service, to support Lupin implementation: to exploit SOAP as the underpinning for Web-

based distributed computation, together with other technologies that deal with math on the

Web, to serve the PSE composition mechanism and generation mechanism; to adopt WSDL

J.JSSAC Vol. 10, No. 4, 2004 17

lupin_impl_big_ok.eps

Figure 2: Lupin’s implementation based on Web service protocols

for Lupin service description; and consider to use UDDI to support the implementation

of Lupin discovery mechanism. Figure 2 shows our first proposal to implement Lupin’s

architecture.

3.2 Proof-of-concept system

Based on the presented Lupin framework, a prototype has been built to check out

the feasibility. We focus on three procedures that illustrate the whole lifecycle of Lupin

application: (1) the process of Lupin service creation/deployment by SOAP infrastructure

in the Lupin service generation mechanism; (2) service registration and discovery by UDDI

registry in the Lupin discovery mechanism; and (3) the actual service binding and user

interface by Lupin PSE runtime in the PSE composition mechanism.

The testbed is built in Java. The Apache Tomcat is adopted to active the Servlet-

enabled web server. Among available SOAP implementations, we chose also an Apache

package called AXIS [14]. Apache Tomcat Web server and AXIS constructed the backbone

of our experimental environment. Figure 3 is the whole diagram of the testing system.

18 数式処理 第 10 巻 第 4 号 2004

lupin_exep_big_ok.eps

Figure 3: Operation flow of Lupin application

3.2.1 Lupin service development, deployment and registration

In this system, all the Lupin services are considered to talk MathML as the default

mathematical protocol. For example, Lupin service exeAsirFactorService is imple-

mented by a Java class FactorService. It accepts polynomial as the input, invokes

Risa/Asir as the computing engine to compute the factorization of the polynomial, and

returns the answer with MathML expression. The format conversion between MathML

and the native mathematical expression is addressed by our XSL library that can be pro-

cessed by Java parser. With AXIS, it can be deployed online by using a wsdd (Web service

deployment descriptor) file which specifies certain properties of the service:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="exeAsirFactorService" provider="java:RPC">

<parameter name="className" value="webservice.asir.FactorService"/>

<parameter name="allowedMethods" value="exe"/>

</service>

</deployment>

After being deployed, the service can be located from the Web by the actual URI:

http://localhost:8001/axis/services/exeAsirFactorService.

The corresponding WSDL file exeAsirFactorService.wsdl can also be generated by the

attached tool Java2wsdl provided by the AXIS SOAP infrastructure, or just could be

simply retrieved by going to:

http://localhost:8001/axis/services/exeAsirFactorService?wsdl.

The WSDL file, which enables the dynamic interface generation to invoke the deployed

Lupin service, plays a critical role in Lupin implementation.

J.JSSAC Vol. 10, No. 4, 2004 19

3.2.2 Lupin service retrieval

To make Lupin service to be searchable, it should be firstly registered to Lupin’s recom-

mender system with corresponding WSDL and relevant data. The recommender system is

here performed by a UDDI service registry. In our experiment, systinet’s WASP UDDI reg-

istry [11] handles the operation to demonstrate that whether it makes sense working as the

discovery mechanism of mathematical services. WASP UDDI supplies a Web interface that

allows the access to the UDDI-specified registry. Both of service registration and searching

operations are supported. The current UDDI specification can only support a very simply

query to achieve the service searching, e.g., service name, business name and some default

standard business taxonomy. There is still not default mathematical taxonomy system de-

fined in UDDI that accommodates the mathematical application discovery. Hence in our

experiment, a temporary mathematical taxonomy system based on GAMS [15] is added

due to the extended functionality of WASP UDDI. The result shows that the successful

discovery can be achieved by querying the registered service name exeAsirFactorService,

as well as its corresponding classification defined in the mathematical taxonomy.

3.2.3 PSE composition

We are now developing the Lupin PSE builder, a Java toolkit that completely supports

the Web service-based PSE composition. The detail discussion will appear in our related

report. Here we only focus on the experiment, which is involved in two parts: the PSE

interface generation and the Lupin service binding. The former one aims at the friendly

user interface that made by the PSE provider to address the easy-to-use PSE frond-end;

while the later one targets the programmed integration of the selected Lupin services.

The service invocation is carried out by Lupin Service Binding API, which is a part

of Lupin PSE runtime and currently implemented in Java. Based on AXIS and DOM

parser, it can dynamically generate the interface for SOAP remote call when given the

URL of WSDL file of certain Lupin service, e.g., the exeAsirFactorService.wsdl. In

this implementation, every Lupin service is a SOAP server and is responsible for processing

the request message and formulating a response. The response message is received by the

networking infrastructure on the service requestor’s node and can be converted from XML

message into certain object that fits the client.

We’ve also made an effort to show that the PSE provider could be supported by the

existing interactive math approaches, to build the application-oriented PSE user interface.

Achievements of many aspects of “math on the web” are providing the significant solutions.

As an example, WebEQ [16] interactive math technology based on Java applets that enables

MathML processing has been used. With it, the exeAsirFactorService can be invoked by

a series of user-friendly operations without necessity to care about what kind of computing

20 数式処理 第 10 巻 第 4 号 2004

engines are working, nor necessity to learn syntax rule of certain CASs. The SOAP-based

messages transmitted during the distributed computation are shown as follows:

Request message:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<exe soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<cmml xsi:type="xsd:string">

<math><apply><minus/><apply><power/><ci>x</ci><cn>6</cn></apply><apply><power/>

<ci>y</ci><cn>6</cn></apply></apply></math>

</cmml>

</exe>

</soapenv:Body>

</soapenv:Envelope>

Response message:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<exeResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<exeReturn xsi:type="xsd:string">

<math><apply><times/><apply><times/><apply><times/><apply><times/><cn type="integer">

1</cn><apply><plus/><apply><plus/><apply><power/><apply><ci>x</ci></apply><cn type=

...

<apply><ci>y</ci></apply></apply></apply><apply><plus/><apply><ci>x</ci></apply><apply>

<ci>y</ci></apply></apply></apply></math>

...

</soapenv:Envelope>

4 Remark

The proof-of-concept system shows that the process of Lupin service invocation can be

sufficiently achieved by WSDL-based interface generation and SOAP-based data exchange.

Hence it is believed that the Web service standard protocols and the relevant XML-based

technology can significantly benefit Lupin’s Web-based PSE mechanism by enabling soft-

ware reusability, portability and inter-operation.

Lupin’s critical concept is to enable the independent development, deployment, discov-

ery and invocation of Internet accessible Lupin services. When well implemented, Lupin

will empower the PSE providers by eliminating many technical difficulties and exploiting

the existing computing resources on their PSE construction. From this perspective, as

a common PSE framework addressed by XML artifacts, Lupin can be applied by a wide

range of field. For example, e-learning can benefit from Lupin’s infrastructure. The topic

of author-once-learn-anywhere (AOLA) for the teacher, researcher, and students in math-

ematical community has been discussed for a long time, but yet, it is not clear how AOLA

J.JSSAC Vol. 10, No. 4, 2004 21

jssac03_x6y6_in_ok.eps

jssac03_x6y6_out_ok.eps

Figure 4: Interface generation and input/output from Lupin service

22 数式処理 第 10 巻 第 4 号 2004

can be achieved. Lupin is expected to facilitate the answer: educators can produce educa-

tion contents by invoking/assembling separately located Lupin services—answer checking,

graph plotting, exercise generation etc., without necessary to learn about the actual pro-

gramming and coding for the invocation. Those Lupin service, on the other hand, are

created and published by service providers and are accessible due to the standard XML-

based protocol. Our later research will focus on this application.

More over, due to our works, we claim that the UDDI registry does not completely meet

our needs of Lupin service discovery, because of UDDI’s poor description facility on math-

ematical issues. Thus, a more informative and semantic approach that efficiently enables

the mathematical service discovery is needed. We are now developing a new Lupin service

registry based on the emerging Mathematical Service Description Language (MSDL) [12]

and the relevant semantic Web technologies [13] to urge our work.

5 Conclusions and future works

In this paper, we have discussed the first design of Lupin, which aims to build the

common, significant computational PSE framework based on the Web. Driven by XML

artifacts, Lupin highlights its characteristics to be open, flexible, portable and robust for

wide-range of PSE construction, and will empower the PSE providers by eliminating many

technical difficulties and exploiting the existing computing resources. Conform to the

design, an implementation based on Web service protocols (SOAP, WSDL, UDDI, etc.)

and relevant XML compliant technologies to address Lupin’s whole architecture is also

considered, and a proof-of-concept system is proposed to check out the feasibility.

Lupin is evolving, our immediate work is to complete the implementation of Lupin

service registry and its relevant service browser to facilitate current Lupin discovery mech-

anism. The development of the Lupin PSE builder, a toolkit pack consists of Java-based

LSB (Lupin Service Binding) API as well as the Lupin service flowing markup and its

generator is also on-going to accommodate the PSE composition mechanism. Currently

targeting at Web-based distributed computation and interactive mathematic education,

Lupin will grow up together with the progress of Internet technology.

References

[1] Wang, P. S.: Design and Protocol for Internet Accessible Mathematical Computation.

In Proc. ISSAC’99, ACM Press, pp. 291–298, 1999.

[2] Lakshman, Y. N. et al.: Software Components using Symbolic Computation for Prob-

lem Solving Environments. In Proc. ISSAC’98, ACM press, pp. 46–53, 1998.

J.JSSAC Vol. 10, No. 4, 2004 23

[3] Houstis, E., and Rice, J. R.: On the Future of Problem Solving Environments,

http://www.cs.purdue.edu/people/jrr, 2000.

[4] Liao, W., Lin, D., and Wang, P. S.: OMEI: An Open Mathematical Engine Interface.

In Proc. ASCM’01, World Scientific Press, pp. 82–91, 2001.

[5] Maekawa, M., Noro et al.: The Design and Implementation of OpenXM-RFC 100 and

101. In Proc. ASCM’01, World Scientific Press, pp. 102–111, 2001.

[6] JavaMath, http://javamath.sourceforge.net

[7] Kreger, H.: Web Service Conceptual Architecture (WSCA 1.0). IBM Software Group,

http://www-3.ibm.com/software/solutions/webservices, 2001.

[8] Seely, S.: SOAP: Cross Platform Web Service Development Using XML. Prentice Hall.

[9] WSDL (Web Services Description Language), http://www.w3.org/TR/wsdl

[10] McKee, M., Ehnebuske, D., and Rogers, D.: UDDI Open Draft Specification.

http://www.uddi.org, 2001.

[11] Systinet WASP, http://www.systinet.com

[12] MSDL (Mathematical Service Description Language), http://monet.nag.co.uk

[13] Montebello, M., and Abela, C.: DAML enabled Web Service and Agents in the Se-

mantic Web. http://www.daml.org

[14] AXIS (Apache eXtensible Interaction System), http://ws.apache.org/axis

[15] GAMS mathematical taxonomy, http://gams.nist.gov/Taxonomy.html

[16] WebEQ, http://www.dessci.com

[17] Li, K., Zhi, L. H., and Noda, M.-T.: On the Construction of a PSE for GCD Compu-

tation. In Proc. ASCM’01, World Scientific Press, pp. 76–81, 2001.

	Introduction
	Lupin's initial design and its conceptual architecture
	Overview
	Architecture

	Implementation
	From Web service to mathematical service
	Proof-of-concept system
	Lupin service development, deployment and registration
	Lupin service retrieval
	PSE composition

	Remark
	Conclusions and future works

