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Abstract

A lot of important control system design problems are regarded as parametric and non-convex opti-
mization problems. Parametric robust control design toolbox solves these robust control problems and
visualize the feasible parameter regions via a parameter space approach based on symbolic-numeric
computation. This paper shows a method of solving robust control system design problems by using
symbolic-numeric computation and description of parametric robust control design toolbox.

1 Introduction
Control system design is to find out feasible parameters to be designed for which a target system
satisfies given control design specifications. A lot of important control system design problems
are regarded as parametric and non-convex optimization problems, and of course to solve these
problems only by using numeric computation is difficult. Recently, there has been an increasing
interest in the application of computer algebra to control system analysis and design.

We have been developing the parametric robust control design toolbox. This toolbox solves the
robust control design problems by parameter space approach based on symbolic-numeric compu-
tation, and visualize the feasible parameter regions of robust control design problems. By using
symbolic computation, this toolbox solves the robust control problems exactly. This toolbox uses
quantifier elimination(QE) by symbolic computation.

2 Robust controller design by a parameter space approach
A parameter space approach is known to control community as an effective method for robust
control synthesis and multi-objective design of fixed-structure controllers. Multi-objective robust
control problem is one of main concerns in control theory. But it often the case that these robust
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control problems are regarded as nonlinear and non-convex optimization problems. We have pro-
posed a method with a software tool for parametric robust control synthesis by symbolic-numeric
computation which can solve above problems. The method is based on a parameter space approach
accomplished by using QE. This section shows the algorithm, methods and solving procedures of
parameter space approach that are used in parametric robust control design toolbox.

2.1 Design procedure

K(s) P (s)
r e u y

− +

Fig. 1: A feedback control system

Now let us consider a feedback control system as shown in Fig.1, and propose a scheme for
fixed-structure robust controller synthesis based on a parameter space approach as follows:

1. According to the characteristics of the plant and also design requirements, determine the struc-
ture of a class of controllers K and select the design parameters in K . For instance, when the
PI-controller K(s) = k + m

s is chosen, k and m are the parameters to be designed.

2. Reduce the given specifications φi to the equivalent first-order formulas ψi.

3. Compute the admissible regions of the design parameters for all specifications φi by applying
QE to the first-order formulas ψi derived from φi.

4. Superpose the admissible regions in the parameter space. Then we can take appropriate param-
eters from the intersections by considering other specifications.

In Step 2, most of important design specifications for robust control such as frequency re-
stricted H∞ norm constraints, stability (gain/phase) margin and stability radius specifications, and
pole location requirements can be recast as sign definite condition (1) by using simple symbolic
computations [6],[8]. This is beneficial to achieve Step 3 efficiently.

In Step 3, a specialized QE algorithm using Sturm-Habicht sequence [2], which is more efficient
than a general QE algorithm based on cylindrical algebraic decomposition, can be applied for
solving a sign definite condition [1]. By using specialized QE, nonlinear and non-convex problems
could be solved exactly. QE-based method provides us an exact and whole feasible regions of the
design parameters.

2.2 Sign definite condition
In this toolbox, selected specifications are reduced to the equivalent first-order formulas that is
called sign definite condition(SDC). This is a definition of sign definite condition(see [6] for de-
tails).
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Definition 1
A function f (x) : R 7→ R is sign definite in the interval x ∈ [a, b], a < b, denote f (x) ∈ N0[a, b]
hereafter, if f (x) preserves the sign in the interval, or does not cross zero in the interval.

Then SDC f (x) ∈ N0[a, b] can be transformed to the condition f (z) ∈ N0[0,∞] by the bilinear
transformation z = −(x − a)/(x − b). Put simply, f (z) ∈ N0[0,∞] means

∀z > 0, f (z) > 0 (1)

where f (z) is an univariate polynomial with parametric coefficients.
The QE-based approach can uniformly and efficiently deal with the most of important design

specifications for robust control by reducing specifications into SDC. Though some of the spec-
ifications are non-convex constraints, we can deal with such non-convex cases exactly and also
parametrically by using QE.

2.2.1 Design examples

We propose some examples to show our design procedure for parametric controller design prob-
lems.

Example 2 (frequency restricted H∞-norm constraints)
We consider a feedback control system as shown in Fig.1 with plant P(s) and PI-controller C(s)
where

P(s) =
1

s − 1
, C(s) = k +

m
s
. (2)

Our aim is to obtain parameters k and m which satisfy the following properties:

• the sensitivity function S (s) and the complementary sensitivity function T (s) satisfy the fol-
lowing frequency restricted norm constraints:

‖S (s)‖[0,ωs] < γs, (3)
‖T (s)‖[ωt ,∞] < γt, (4)

where

S (s) =
1

1 + P(s)C(s)
, (5)

T (s) =
P(s)C(s)

1 + P(s)C(s)
. (6)

Based on the procedure shown in [6], the norm constraints (3) and (4) can be recast as SDCs.

fs(x) = x2 +
(2mγ2

s − (k − 1)2γ2
s + 1)x + m2γ2

s

−1 + γ2
s

∈ N0[0, ω2
s], (7)

ft(x) = x2 + (2m − (k − 1)2 +
k2

γ2
t

)x + m2(1 − 1
γ2

t
) ∈ N0[ω2

t ,∞]. (8)

Then the SDC (7) and (8) are reduced by a bilinear transformation

fs(z) = γ4
sz3 + (

((k − 1)2γ2
s − 2mγ2

s − 1)ω4
s + m2γ2

s

γ2
s − 1

− γ4
sω

2
s)z2

− ((k − 1)2γ2
s − 2mγ2

s − 1)ω2
s + 2m2ω2

sγ
2
s

γ2
s − 1

z +
m2ω4

sγ
2
s

γ2
s − 1

∈ N0[0,∞],
(9)
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ft(z) = z2 + (2m − (k − 1)2 +
k2

γ2
t
− 2ωt)z + ω4

t − ω2
t (2m − (k − 1)2 +

k2

γ2
t

)

+ m2(1 − 1
γ2

t
) ∈ N0[0,∞].

(10)

By using QE to solve SDC (9) and (10), we obtain feasible regions. Then we can get the feasible
regions of controller parameters so that the system (2) satisfies the mixed sensitivity specification.

Example 3 (Gain margin constraint)
Gain margin constraint can be reduced to a sign definite condition as follows (see [8]). Consider a
transfer function G(s) and decompose G( jω) as

G( jω) =
gr(ω) + jg j(ω)

d(ω)
(11)

where gr(ω), g j(ω) and d(ω) are polynomials in ω.
As shown in [8], G(s) holds the gain margin (γm, γ

M) iff the following system of equations f1(ω, t) = gr(ω) − d(ω)t = 0
f2(ω) = g j(ω) = 0

is not satisfied in ω ∈ R, t ∈ [−1/γm,−1/γM]. One can obtain a polynomial fg(t) by eliminating ω
from f1, f2. Then the condition that G(s) holds the gain margin (γm, γ

M) can be reduced to a sign
definite condition, that is, fg(t) is sign definite in t ∈ [−1/γm,−1/γM]. By bilinear transformation,
we can get the fg(z) ∈ [0,∞].

Example 4 (Phase margin constraint)
Phase margin constraint can be reduced to a sign definite condition as follows (see [8]). As the
in the case of gain margin constraint, consider a transfer function G(s) and decompose G( jω) (see
(11)).

As shown in [8], G(s) holds the phase margin φ iff the following system of equations f1(ω) = g2
r (ω) + g2

j (ω) − d2(ω) = 0

f2(ω, t) = gr(ω) − d(ω)t = 0

is not satisfied in ω ∈ R, t ∈ [−1, cos(−π+ φ)]. One can obtain a polynomial fp(t) by eliminating ω
from f1, f2. Then the condition that G(s) holds the phase margin φ can be reduced to a sign definite
condition, that is, fp(t) is sign definite in t ∈ [−1, cos(−π + φ)]. By bilinear transformation, we can
get the fp(z) ∈ [0,∞].

Example 5 (Pole location(Wedge shape))
For the wedge shape region, x + jy ∈ D can be expressed as x = ω

y = m(ω − t)
, ω ∈ R, t ∈ [b,∞].

Let us consider how to assign all roots of a characteristic polynomial p(s) in the specified region
D ∈ C. This is equivalent to

p(s) , 0, ∀s ∈ D
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Fig. 2: Pole location(wedge shape)

where D denotes the complementary set of D in C. In this case, p(s) is called D-stable. Then, the
pole location problem is stated as follows: pr(x, y) = 0

p j(x, y) = 0
, p(s) = pr(x, y) + jp j(x, y)

do not hold in s = x + jy ∈ D.
As shown in [8], p(s) has all roots in D of which complementary set D Pr(ω, t) = 0

P j(ω, t) = 0
where

 Pr(ω, t) = pr(x(ω, t), y(ω, t))
P j(ω, t) = p j(x, y)

is not satisfied in ω ∈ R, t ∈ [b,∞]. One can obtain a polynomial fw(t) by eliminating ω from
Pr, P j. Then the condition that all roots of p(s) are in the wedge shape region can be reduced to a
sign definite condition, that is, fw(t) is sign definite in t ∈ [b,∞]. By bilinear transformation, we
can get the fw(z) ∈ [0,∞].

2.3 Solving SDC by a specialized QE
This section briefly sketches a special QE method based on the Sturm-Habicht sequence for the
SDC (see [1] for details), which plays a key rôle in this paper.

Definition 6 (L. Gonzàlez et al. [3])
Let P, Q be polynomials in R[x] and write P =

∑n
k=0 ak xk, Q =

∑m
k=0 bk xk, where n, m are non-

negative integers. For i = 0, 1, . . . , ` = min(n,m), the subresultant associated to P, n, Q and m of
index i is defined by S resi(P, n,Q,m) =

∑i
j=0 Mi

j(P,Q)x j, where Mi
j(P,Q) is the determinant of the
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matrix composed by the columns 1, 2, . . . , n + m − 2i − 1 and n + m − i − j in the matrix

si(P, n,Q,m) :=

n+m−i︷                              ︸︸                              ︷

an . . . a0

. . .
. . .

an . . . a0

bm . . . b0

. . .
. . .

bm . . . b0



 m − i

 n − i

Let v = n + m − 1 and δk = (−1)
k(k+1)

2 . The Sturm-Habicht sequence associated to P and Q is then
defined as the list of polynomials {S H j(P,Q)} j=0,...,v+1 given by

S Hv+1(P,Q) = P ,

S Hv(P,Q) = P′Q ,

S H j(P,Q) = δv− j · S res j(P, p, P′Q, v)
for j = 0, 1, . . . , v − 1 ,

where P′ = dP
dx . In particular, {S H j(P, 1)} j=0,...,v+1 is called the Sturm-Habicht sequence of P. Here

it is simply denoted by {S H j(P)}.

The Sturm-Habicht sequence can be used for real root counting, just like the Sturm sequence.
Moreover it has favourable properties in terms of specialization and computational complexity (see
[3, 4] for details).

Theorem 7 (González-Vega et al. [4])
Let P(x) ∈ R[x] and

{g0(x), . . . , gk(x)}
be a set of polynomials obtained from {S H j(P(x))} by deleting the identically zero polynomials.
Let α, β ∈ R ∪ {−∞,+∞} and α < β. Define WS H(P;α) as the number of sign variations on
{g0(α), . . . , gk(α)}. Then, WS H(P;α, β) := WS H(P;α)−WS H(P; β) gives the number of real roots of
P in [α, β].

Denote the principal j-th Sturm-Habicht coefficient of S H j( f ), i.e., the coefficient of degree j
of S H j( f ), by st j( f ) and a constant term of S H j( f ) by ct j( f ) for all j. Then,

WS H( f ; 0,+∞) = WS H( f ; 0) −WS H( f ;+∞)
= V

(
{ctn( f ), . . . , ct0( f )}

)
− V
(
{stn( f ), . . . , st0( f )}

)
, (12)

where V
(
{ai}
)

stands for the number of sign changes over the sequence {ai}.
The SDC holds if and only if both WS H ( f ; 0, +∞) = 0 and stn( f ) > 0 hold.
Hence an equivalent condition to the SDC can be obtained through the following combinatorial

procedure:

1. Consider all (at most) 32n−1 possible sign combinations over the polynomials cti( f ),
sti( f ) since ct0( f ) = st0( f ), stn( f ) > 0, stn−1( f ) > 0.
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2. Choose all sign conditions that satisfy WS H( f ; 0, +∞) = 0 by (12).

3. Construct semi-algebraic sets generated by cti( f ), sti( f ) for the selected sign conditions and
combine them as a union.

The obtained condition is of the form of a union of semi-algebraic sets, so called disjunctive
normal form. (The obtained result is expected to contain many empty sets. Some impossible sign
combinations can be pruned beforehand (see [1]).)

3 Parametric robust control design toolbox
Our parametric robust control design toolbox is a GUI-based parametric robust control toolbox.
And this toolbox is also based on symbolic quantifier elimination cooperating with numerical sim-
ulation.

To use Maple/MATLAB as a platform has the advantage that Maple packages are automatically
incorporated into MATLAB by using “MATLAB Extended Symbolic Math Toolbox". The QE
solver used in our toolbox is a Maple package called “SyNRAC”, which is a symbolic-numeric
toolbox for solving real algebraic constraints [9]. Our toolbox provides visualization facilities (of
bode diagram, nyquist plot and pole location) for

• open-loop analysis, and

• controller synthesis.

Those are shown by using numerical computation.

3.1 General appearance
Current version of our toolbox supports controller synthesis in terms of following specifications:

• H∞ norm constraints (sensitivity/complementary sensitivity functions)

• Hurwitz stability

• stability (gain/phase) margin specification

• pole location requirement

This toolbox can deal with not only a single-objective controller synthesis but also multi-objective
controller synthesis among the above specifications based on a parameter space approach accom-
plished by quantifier elimination.

And current version of our parametric robust control design toolbox has four windows:

• Main window (Fig.3(1))
has some edit field, controller, plant, specifications, and parameters.

• Control synthesis window (Fig.3(2))
shows Bode diagram (for sensitivity function and complementary sensitivity function) and
Nyquist plot and Pole/Zero Location for closed-loop transfer function, and users change speci-
fications to manipulate graphic objects on the control synthesis window.

• Open-loop window (Fig.3(3))
shows Bode diagram and Pole/Zero Location for open-loop transfer function.
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Fig. 3: A screen shot of parametric robust control toolbox

• Parameter space window (Fig.3(4))
shows the regions of feasible parameters that satisfy specifications.

Our toolbox can be easily handled by users via the above mentioned windows. Basic operating
procedure is shown as follows:

1. Select and push the “Windiws" buttons located at bottom of Main window which you want to
show on main window.

2. Determine the structure of the controller and plant, and type the controller and plant into the
boxes marked “System" at the top of main window.

3. Select the specifications which you want to investigate, check the boxes corresponding to your
selection, and specify/input the concrete specifications.

4. Push the “Update" button, you can get feasible regions.

In Step 2, plant and controller structure can be specified with main window.
In Step 3, users can select a number of specifications. And there are two ways to set specifi-

cations, users can use both input methods. One method is to edit text box on main window, and
another method is to move graphic objects on parameter window by using a mouse.
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In Step 4, feasible regions are computed and shown on parameter region window. The tool-
box shows feasible region which satisfy each specifications. Fig.3(4) is shown a superposition of
feasible regions of sensitivity, complementary sensitivity and Hurwitz stability.

If users click or drag with the mouse on parameter region window, parameter values are re-
flected in system, users can look see the behavior of bode and nyquist diagram and pole assignment
on parameter window.

Above description is about using method of parametric robust control design toolbox. Fig.4 is
a system and execution flow of parametric robust control design toolbox.

Fig. 4: System and execution flow

3.2 Optional functions

3.2.1 3-D view

If controller has 3 parameters, e.g.,PID-controller, the toolbox displays 3-D figure and cross-
sectional views of feasible regions. Fig.5 is an example of 3-D view and Fig.6 is cross-sectional
views at each axis of all feasible parameters for satisfying H∞ norm specification(sensitity). As
in case of 2 parameters system, users can click or drag with the mouse on parameter region win-
dow, parameter values are reflected in system, users can look see the behavior of bode and nyquist
diagram and pole assignment on parameter window. Cross-sectional views are movable by slide
bar.

3-D view windows has some check boxes.

• show whole region
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Fig. 5: A screen shot of parametric robust control toolbox

Fig. 6: A screen shot of parametric robust control toolbox

• show only feasible region

Left side of Fig.5 shows feasible region of phase margin specification, and right side one is view
of whole region.

• show XY plane

• show YZ plane

• show ZX plane

And left side of Fig.6 are snapshots that each plane is shown. The XY, YZ, ZX planes in 3-D view
window work with slide bars on parameter region window(right side of Fig.6).

3.2.2 Approximate feasible parameter regions

Parametric robust control design toolbox gives us exact feasible regions of parameters since it
solves control design problems by using QE. But QE-based approach is expensive and can not solve
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large size problems in a reasonable amount of time. Hence, in such cases, it would be reasonable to
employ a numerical method to obtain an approximate result. Here we employ a validated numerical
method to solve a SDC approximately (but with guarantee) using interval arithmetics.

Fig. 7: A screen shot of parametric robust control toolbox

The algorithm is shown as follows:

Algorithm 8
• Given:

– specification φ

– box B

• Find:
An element of the set {T, F, U}

– T implies that φ is true for all elements of B

– F implies that φ is false for all elements of B

– U undecided

We consequently obtain three kinds of regions in a parameter space by using Algorithm8,

• Red : regions which satisfy the given SDC,

• White : regions which does not satisfy the given SDC,

• Black : undecided regions,
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which are composed by a set of boxes. One can first specify accuracy (fineness of a smallest box)
when we use this function. In other words, this is a box decomposition of a parameter space with
respect to a given SDC to the specified accuracy. See the right side figure of Fig.7 for example.

4 Conclusion
We have been developing a parametric robust control design toolbox that is based on MATLAB and
for robust parametric control via a parameter space approach based on symbolic-numeric computa-
tion. By using specialized QE, nonlinear and non-convex problems could be solved exactly, users
can get feasible parameter areas instead of feasible parameter point. This toolbox can treat not only
single objective problems but also multi-objective problems, we can check the feasible regions that
is superposed feasible regions of each problem. And our toolbox can be easily handled because the
toolbox is a GUI-based toolbox, and can show the feasible parameter areas by visualization. For
those reason, this toolbox is very helpful in education and actual engineering fields.
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A Appendix
In this section, we show the detailed usage of parametric robust control design toolbox.

A.1 How to use the toolbox

A.1.1 Basic function

Current version of parametric robust control design toolbox has four windows:

• Main window (Fig.8(1))
has some edit field, controller, plant, specifications, and parameters.

• Control synthesis window (Fig.8(2))
shows Bode diagram (for sensitivity function and complementary sensitivity function) and
Nyquist plot and Pole/Zero Location for closed-loop transfer function, and users change speci-
fications to manipulate graphic objects on the control synthesis window.

• Open-loop window (Fig.8(3))
shows Bode diagram and Pole/Zero Location for open-loop transfer function.

• Parameter space window (Fig.8(4))shows the regions of feasible parameters that satisfy spec-
ifications.

Basic operating procedure is shown as follows:
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Fig. 8: Snapshot of parametric robust control toolbox

1. Select and push the “Windiws" buttons located at bottom of Main window which you want to
show on main window.

2. Determine the structure of the controller and plant, and type the controller and plant into the
boxes marked “System" at the top of main window.

3. Select the specifications which you want to investigate, check the boxes corresponding to your
selection, and specify/input the concrete specifications.

4. Push the “Update" button, you can get feasible regions.

In Step 2, plant and controller structure can be specified with main window “System". In Step
3, users can select a number of specifications. And there are two ways to set specifications, users
can use both input methods. One method is to edit textbox on main window, and another method is
to move graphic objects on control synthesis window by using a mouse. In Step 4, feasible regions
are computed and shown in red on parameter space window. If user select multiple specifications,
the toolbox superposes each feasible region which satisfy each specifications. Fig.8(4) is shown a
superposition of feasible regions of sensitivity, complementary sensitivity and Hurwitz stability.

If users click or drag with the mouse on parameter space window, parameter values are reflected
in system, users can look see the behavior of bode diagram and nyquist plot and pole/zero location
on control synthesis window.
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A.2 Description of window and how to use each window

A.2.1 Main window

Fig.8(1) is main window of parametric robust control toolbox. Users can do as follows on main
window.

• Input plant and controller functions.

• Select specifications.

• Select windows that users want look see.

A.2.2 System section

Fig. 9: System section

System section(Fig.9) is for inputting plant and controller functions. Users can use variable s
and parameters k,m, l.

A.2.3 Variable section

Fig. 10: Variable section

Variable section(Fig.10) is for assign variables and parameter area, and show/assign parameter
values that are selected. This toolbox show feasible areas with k on x-axis, m on y-axis and l on
z-axis.

1. Value of parameter k that is specified now on the parameter space window. This value is editable
by not only keyboard input but also to click or drag on the parameter space window.

2. Minimum number of area of x-axis of parameter space window.
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3. Maximum number of area of x-axis of parameter space window.

4. Value of parameter m that is specified now on the parameter space window. This value is
editable by not only keyboard input but also to click or drag on the parameter space window.

5. Minimum number of area of y-axis of parameter space window.

6. Maximum number of area of y-axis of parameter space window.

7. Value of parameter l that is specified now on the parameter space window. This value is editable
by not only keyboard input but also to click or drag on the parameter space window.

8. Minimum number of area of z-axis of parameter space window.

9. Maximum number of area of z-axis of parameter space window.

A.2.4 Bode section

Fig. 11: Bode section

Bode section(Fig.11) is for input/show information that is shown on bode diagram. Descrip-
tions of each items follow.

1. Sensitivity function S (s) which is designed. Users can not change this section because it is
computed automatically.

2. Gain constraint γs which is applied to sensitivity function S (s). This value is editable by not
only keyboard input but also to operate GUI object on the control synthesis window(Fig.8(2)).

3. Max value of frequency ωs which is applied to sensitivity function S (s). This value is ed-
itable by not only keyboard input but also to operate GUI object on the control synthesis win-
dow(Fig.8(2)).

4. Check this checkbox if you want to get parameter feasible region of sensitivity function.

5. Complementary sensitivity function T (s) which is designed. Users can not change this section
because it is computed automatically.

6. Gain constraint γt which is applied to complementary sensitivity function T (s). This value is
editable by not only keyboard input but also to operate GUI object on the control synthesis
window(Fig.8(2)).
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7. Minimum value of frequency ωt which is applied to complementary sensitivity function T (s).
This value is editable by not only keyboard input but also to operate GUI object on the control
synthesis window(Fig.8(2)).

8. Check this checkbox if you want to get parameter feasible region of complementary sensitivity
function.

9. Check this checkbox if you want to get parameter feasible region of Hurwitz stability of control
synthesis.

A.2.5 Nyquist section

Fig. 12: Nyquist section

Nyquist section(Fig.12) is for input/show information that is shown on nyquist plot. Descrip-
tions of each items follow.

1. Minimum value of gain margin which is applied to the control synthesis. This value is ed-
itable by not only keyboard input but also to operate GUI object on the control synthesis win-
dow(Fig.8(2)).

2. Maximum value of gain margin which is applied to the control synthesis. This value is ed-
itable by not only keyboard input but also to operate GUI object on the control synthesis win-
dow(Fig.8(2)).

3. Check this checkbox if you want to get parameter feasible region of gain margin of control
synthesis.

4. Value of phase margin which is applied to the control synthesis. This value is editable by not
only keyboard input but also to operate GUI object on the control synthesis window(Fig.8(2)).

5. Check this checkbox if you want to get parameter feasible region of phase margin of control
synthesis.

A.2.6 Pole section

Pole section(Fig.13) is for input/show information that is shown on pole/zero location. Descriptions
of each items follow.

1. Check this checkbox if you want to get parameter feasible region that satisfies pole assignment
of wedge shape.

2. Slope of the WedgeShape. This value is editable by not only keyboard input but also to operate
GUI object on the control synthesis window(Fig.8(2)).
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Fig. 13: Pole section

3. Distance from origin to WedgeShape. This value is editable by not only keyboard input but
also to operate GUI object on the control synthesis window(Fig.8(2)).

A.2.7 Windows section

Fig. 14: Windows section

Windows section is for opening the windows. “Param" button opens the control synthesis
window. “DNF" button opens the parameter space window. “DNF2" button opens the approximate
feasible parameter regions window. “DNF3" button opens the fast parameter space window that
draws by symbolic computation and evaluation of sample point. “3D" button opens the 3-D view
window.

A.2.8 Buttons

Fig. 15: Buttons

Those buttons are used to operate the “Main" window. If “Update" button is pushed, this
toolbox compute the specifications. “Exit" button is for closing the parametric robust control design
toolbox.

A.2.9 Control synthesis window

Fig.8(2) is the Control synthesis window. Users can set specifications by operating GUI objects,
and can look see the behavior of control synthesis.
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A.2.10 Bode diagram

Fig. 16: Bode diagram

Bode diagram object is for setting the norm constraint of sensitivity and complementary sen-
sitivity function, and show those bode diagrams. Sensitivity function and related specification is
drawn in blue, and complementary sensitivity function and related specification is drawn in red.
Description of each object are follow.

1. Bode diagram of sensitivity function S (s).

2. Bode diagram of complementary sensitivity function T (s).

3. Max value of frequency ωs which is applied to sensitivity function S (s). This object is movable
with mouse dragging.

4. Gain constraint γs which is applied to sensitivity function S (s). This object is movable with
mouse dragging.

5. Gain constraint γt which is applied to complementary sensitivity function T (s). This object is
movable with mouse dragging.

6. Gain constraint γt which is applied to complementary sensitivity function T (s). This object is
movable with mouse dragging.

A.2.11 Nyquist plot

Nyquist plot(Fig.17) shows nyquist locus of control synthesis and users can set gain/phase margin
on this window.

1. Locus of open-loop transfer function L( jω)(0 < ω) on complex number plane.

2. Minimum value of gain margin. This object is movable with mouse dragging.
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Fig. 17: Nyquist plot

3. Maximum value of gain margin. This object is movable with mouse dragging.

4. Unit circle.

5. Minimum value of phase margin. This object is movable with mouse dragging.

A.2.12 Pole/Zero location

Fig. 18: Pole assignment

Pole assignment(Fig.18) shows behaviors of pole and zero of control synthesis on complex
number plane.
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1. Pole of control synthesis. If pole are in right half plane, control synthesis become unstable.

2. Zero of control synthesis. It negate pole of control synthesis.

3. Distance from origin to WedgeShape. This object is movable with mouse dragging.

4. Slope of the WedgeShape. This object is movable with mouse dragging.

A.2.13 Parameter space window

Parameter space window(Fig.19) shows feasible regions which satisfy the specifications that se-
lected on the main window.

Fig. 19: Parameter space window

1. Border lines from specifications which are selected by user on main window.

2. Feasible parameter region which satisfy all selected specifications. This region colors in red.

3. Slide bar for changing parameter value which is interfaced with 3D view. This object is movable
with mouse clicking/dragging.

If users click or drag with the mouse on parameter region window, parameter values are reflected
in system, users can look see the behavior of control synthesis on control synthesis window.
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A.2.14 Optional functions

A.2.15 3-D view

If controller has 3 parameters, e.g.,PID-controller, the toolbox displays 3-D figure and cross-
sectional views of feasible regions. The Fig.20 is an example of 3-D view and Fig.21 is cross-
sectional views at each axis of all feasible parameters. Users can use this function to put “3D"
button on main window. 3-D view window has some checkboxes, users can look see following

Fig. 20: 3-D view window

Fig. 21: parameter space window

functions to check the boxes.

1. show whole region
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2. show only feasible region

3. show XY plane

4. show YZ plane

5. show ZX plane

And “Tools" which is menu of 3-D view window has some functions that operate 3-D objects,
“Zoom in", “Zoom out", “3-D rotation", “Remove camera", etc. As in the case of 2 parameters
system, users can click or drag with the mouse on parameter region window(right side of 20),
parameter values are reflected in system, users can look see the behavior of bode and nyquist
diagram and pole assignment on parameter window. Cross-sectional views are movable by slide
bar.

A.2.16 Approximate feasible parameter regions

Parametric robust control design toolbox us exact feasible regions of parameters since it solves
control design problems by using QE. But QE-based approach is expensive and can not solve large
size problems in a reasonable amount of time. Hence, in such cases, it would be reasonable to
employ a numerical method to obtain an approximate result. Here we employ a validated numerical
method to solve a SDC approximately (but with guarantee) using interval arithmetics. Users can
use this function to put “DNF2" button on main window.

Fig. 22: Approximate feasible parameter regions

Users can select a drawing resolution “low", “mid", “high" from “Resolution" menu. Same as
parameter space window, red area satisfy the selected specifications, and white area does not satisfy
the selected specifications. The area that painted in black is unclear area that satisfy or not satisfy
the specification under selected resolution. And the function that users can look see the behavior
of control synthesis is not implemented in this function.
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