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Abstract

This paper describes computations of the relations between the circumradius R and area S of cyclic
polygons given by the lengths of the sides. The classic results of Heron and Brahmagupta clearly
show that the product of R and S is expressed by the lengths of the sides for triangles and cyclic
quadrilaterals. In a previous paper by the author published in 2015, the similar integrated formulae
of the circumradius and the area for cyclic pentagons and hexagons were explicitly computed, where
elimination by resultants and factorization of polynomials were minutely applied. In this study, ex-
tending the previous results, we computed the integrated formulae for cyclic heptagons. However, we
adopted the method of numerical interpolation instead of elimination, because it is almost impossible
to compute the resultants for the heptagon case. As a result, we succeeded in computing the integrated
formula, which is a polynomial equation in z = 4S R with degree 38 and 31,590 terms. This polyno-
mial is straightforwardly transformed into a polynomial in Z = (4S R)2 with degree 38 and 973,558
terms, which is supposed to be the substitution of the side length a8 = 0 into the integrated formula
for cyclic octagons, if we could have its explicit expression.

1 Introduction
In this study, we consider a classic problem in Euclidean geometry for cyclic polygons; that is, n-
gons inscribed in a circle, given by the lengths of sides a1, a2, . . . , an. Since Robbins [9] discovered
the area formula for cyclic pentagons in 1994, area formulae for cyclic n-gons, up to n = 7, 8, have
been mainly studied by several authors ([1], [2], [8], [10], [11]). On the other hand, the author of
the present paper has been clarifying the circumradius formulae for cyclic heptagons and octagons
in ([3], [5], [6]).
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Compared with these studies, the relation between the area and circumradius has seldom been
discussed except for ([10], [4]). In a previous paper by the author [4], the relation between the
circumradius R and the area S for cyclic pentagons and hexagons was specifically addressed. As a
result, we succeeded in computing the integrated formulae of R and S explicitly. Based on these re-
sults, the present paper focuses on the computation of the integrated formulae for cyclic heptagons.
It seems that only a slide presentation by Svrtan [11] has reported the definition polynomial in
Z = (4S R)2 as having 31,590 terms. Even though (4S R)2 is presumed to be the error in 4S R, there
is almost no description about the relevant algorithm in [11]. Since Svrtan mainly discusses the
area formulae (n = 7, 8), it is difficult to reproduce his results. Therefore, in this paper, we show
the details of our algorithm by numerical interpolation, in order to verify whether the results match.

In Section 2, we review the classical results for triangles and cyclic quadrilaterals in our notation
and formulation. In Section 3, we cite the results of the author’s previous paper [4] for cyclic
pentagons and hexagons.

In Section 4, we describe the details for the computation of the integrated formulae for cyclic
heptagons. In this step, the “new Brahmagupta’s formula” discovered by Svrtan [11] is applied. In
Section 5, we show our algorithm by numerical interpolation in detail. Certainly the same result
with 31,590 terms is obtained. Finally, we summarize the results of this study and discuss the
extension of the formulae to cyclic octagons in Section 6.

2 Classical results for n-gons (n = 3, 4)
Firstly, for a triangle with side lengths a1, a2, and a3, the classic formula derived by Heron gives
its circumradius and area as follows: R =

a1a2a3√
(a1+a2+a3)(−a1+a2+a3)(a1−a2+a3)(a1+a2−a3)

,

S =
√

(a1+a2+a3)(−a1+a2+a3)(a1−a2+a3)(a1+a2−a3)
4 .

(1)

It is straightforward to combine these equations, and we obtain the relation

4S R = a1a2a3. (2)

We should note that, in our formulation, the area of the triangle between
→

OA= [x1, y1] and
→

OB=
[x2, y2] is defined as the determinant

S =
1
2

∣∣∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣∣∣ , (3)

whose sign depends on the direction of the angle between these two vectors. Hence, discarding the
sign of area S of polygons, the formula for triangles given by Eq. (2) is rewritten as |z| −

√
s3 = 0,

Z − s3 = 0,
(4)

where z = 4S R, Z = (4S R)2 , s3 = a2
1a2

2a2
3, and

√
s3 = a1a2a3 using elementary symmetric

polynomials with a2
i ’s.

Secondly, Brahmagupta’s formula gives the circumradius and area of a cyclic quadrilateral, and
it is again straightforward to integrate this into

(4S R)2 = (a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3). (5)
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Using the elementary symmetric polynomials with a2
i ’s of the 4th order, this equation is rewritten

in reduced form as
Z = s3 + s1

√
s4, (6)

where s1 = a2
1 + · · · + a2

4, s2 = a2
1a2

2 + · · ·, and
√

s4 = a1a2a3a4.
Since Eq. (5) represents the case of convex quadrilaterals, the other case of non-convex, cross-

ing figures is given by letting a4 := −a4, as follows:

(4S R)2 = −(a1a2 − a3a4)(a1a3 − a2a4)(a1a4 − a2a3). (7)

Converting this equation into an expression by elementary symmetric polynomials, we obtain

Z = s3 − s1
√

s4. (8)

We should note that a good insight into the structure of the formulae is provided by the introduction
of an auxiliary expression

√
sn = a1 · · · an, as well as the notion of crossing parity ε ([9], [2]), where

ε is 0 for a triangle, 1 for a convex quadrilateral, and -1 for a non-convex quadrilateral.

Theorem 1
In conclusion, combining Eqs. (4) (6) (8) into a polynomial form, we have φ3(z) = |z| − √s3,

ψ3,4(Z) = Z − (s3 + ε · s1
√

s4),
(9)

as defining polynomials in z and Z for triangles and cyclic quadrilaterals.

Since we have s(3)
3 = s(4)

3 |a4=0 and so on, the notations are intentionally combined for the cases
ε = 0,±1. Hereafter, we abbreviate s(n)

i simply as si, if the order n is obvious in the context.

3 Latest results for n-gons (n = 5, 6)
In the author’s previous paper [4], we succeeded in specifying the structure of integrated formulae
for cyclic n-gons (n = 5, 6) in detail. First, we derived the following polynomial equation by
dividing the cyclic pentagon into a triangle and a cyclic quadrilateral.

Theorem 2
The defining polynomial in z = 4S R for cyclic pentagons is given by

φ5(z) = |z|7 − 2s3|z|5 − (s2
1 + 4s2)

√
s5|z|4 + (s2

3 − s2
1s4 − 14s1s5)|z|3

−(s2
1s3 + 8s1s4 − 4s2s3 + 24s5)

√
s5|z|2

−(s2
1s2 − 4s2

2 + 2s1s3 + 16s4)s5|z|
−(s3

1 − 4s1s2 + 8s3)s5
√

s5 (18 terms).

(10)

Rewriting the equation φ5(z) = 0 by the terms with even degrees and odd degrees as

|z|
(
z6 − 2s3z4 + · · ·

)
= (s2

1 + 4s2)
√

s5z4 + · · · + (s3
1 − 4s1s2 + 8s3)s5

√
s5, (11)

squaring both sides, and substituting z2 = Z, we obtain the polynomial in Z = z2.
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Theorem 3
The defining polynomial in Z = (4S R)2 for cyclic pentagons has the following form:

ψ5(Z) = Z7 − 4s3Z6 +
(
−28s1s5 − 2s2

1s4 + 6s2
3

)
Z5 + · · ·

· · · − (s3
1 − 4s1s2 + 8s3)2s3

5 (63 terms).
(12)

Next, we computed the case of a convex cyclic hexagon by dividing it into two cyclic quadrilaterals.
Using elimination by resultants and polynomial factorization, we obtained the following theorem
and corollaries.

Theorem 4
One of the defining polynomials of Z = (4S R)2 for cyclic hexagons has the following form:

ψ(+)
6 (Z) = Z7 − (4s3 + 28

√
s6)Z6 + (· · ·)Z5 + · · · + (· · ·)Z

−(s3
1 − 4s1s2 + 8s3 − 16

√
s6)2

×(s3
5 − 4

√
s6

5 + (s3
1 − 4s1s2 + 4s3)

√
s6

4

+(−s2
1s4 + 2s1s5 + 4s2s4 − s2

3)
√

s6
3 + (s1s3s5 − 4s4s5)

√
s6

2

−s2s2
5
√

s6) (327 terms).

(13)

Corollary 5
(i) If we replace

√
s6 with −√s6 in ψ(+)

6 (Z), we obtain the other polynomial ψ(−)
6 (Z), which corre-

sponds to the group that does not include the convex cyclic hexagon.
(ii) If we replace

√
s6 with 0 in ψ(+)

6 (Z) and ψ(−)
6 (Z), we obtain the pentagon formula ψ5(Z) in Eq.

(12). That is, these three polynomials are represented uniformly through the crossing parity ε.

Theorem 6
In conclusion, combining Eqs. (10) (12) (13) into a polynomial form, we have φ5(z) = |z|7 − 2s3|z|5 − (s2

1 + 4s2)
√

s5|z|4 + · · · ,
ψ5,6(Z) = Z7 − (4s3 + 28ε

√
s6)Z6 + · · · ,

(14)

where ε = 0 for cyclic pentagons, ε = 1 for the group that includes convex cyclic hexagons, and
ε = −1 for the other group.

Therefore, the final goal of the present study is to find integrated formulae for cyclic heptagons and
octagons analogous to Eq. (14). Comparing the area formulae and circumradius formulae, we can
speculate that the relations between S and R are expressed by the polynomials in z = 4S R for n = 7
and Z = (4S R)2 for n = 7, 8, with degree 38. As a result of this study, we succeeded in computing
such formulae for cyclic heptagons explicitly as speculated.

4 Main results for cyclic heptagons
We have succeeded in showing that the products of area S and circumradius R of cyclic heptagons
z = 4S R and Z = (4S R)2 are the respective roots of the following polynomials: φ7(z) = |z|38 − 8s3|z|36 + · · · + B1z + B0 (31, 590 terms),

ψ7(Z) = Z38 − 16s3Z37 + · · · +C1Z +C0 (973, 558 terms).
(15)
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Here, the respective coefficients belong to B j ∈ Z[s1, . . . , s6,
√

s7]), and C j ∈ Z[s1, . . . , s6, s7]),
where si denotes the elementary symmetric polynomials of the 7th degree with a2

j , as follows:

s1 = a2
1 + a2

2 + · · · + a2
7, . . . , and s7 = a2

1a2
2 · · · a2

7, (
√

s7 = a1a2 · · · a7). (16)

The precise forms including the number of terms in each coefficient are shown in Table 2.

4.1 Constant terms C0 in ψ7(Z) and B0 in φ7(z)

We assume that the area formulae and circumradius formulae for n = 7, 8 are already computed.
Expanding the area formula for x = (4S )2 by Maley et al. [2], we obtain

G7(x) = x38 + M′37x37 + · · · + M′0 (955,641 terms),
G8(x) = x38 + M37x37 + · · · + M0 (3,248,266 terms),

(Mi ∈ Z[s1, . . . , s7, ε
√

s8], M′i = Mi|ε=0).

(17)

As elucidated in ([5], [6]), the circumradius formulae for y = R2 are expressed as follows:
F7(y) = P′38y38 + · · · + P′1y + P′0 (199,695 terms),
F8(y) = P38y38 + · · · + P1y + P0 (845,027 terms),

(Pi ∈ Z[s1, . . . , s7, ε
√

s8], P′i = Pi|ε=0).

(18)

Combining Eqs. (17) and (18), the constant term C0 in Eq. (15) is straightforwardly computed. Let
each root of G7(x) and F7(y) be xi and yi, respectively. Since we have x = (4S )2 and y = R2, the
constant term of the polynomial with roots Z = xy is given by

38∏
i=1

(xiyi) =
(∏

xi

)
·
(∏

yi

)
= M′0 ·

P′0
P′38
= C0, (19)

where M′0 is divisible by P′38, and we have the polynomial expression C0 ∈ Z[s1, . . . , s6, s7].
Moreover, this polynomial is factorized in Z[s1, . . . , s6,

√
s7] as C0 = (±B0)2. Here, the plus or

minus sign is decided by the numerical substitution of ai := pi with random primes, and we obtain
the constant term B0 in Eq. (15).

4.2 Extracting underlying relational expressions

4.2.1 New Brahmagupta’s formula

In the author’s preceding paper [7], a cyclic heptagon is divided into a hexagon and a triangle. In
contrast, here we apply the “new Brahmagupta’s formula” discovered by Svrtan [11], which leads
to simpler expressions of geometric relations.

Brahmagupta’s area formula for a (convex) cyclic quadrilateral with side lengths {a, b, c, d} has
the following form:

16S 2 = 2
(
a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

)
− a4 − b4 − c4 − d4 + 8abcd. (20)

We express the right-hand side as G(d), which we regard as a function of d. Letting g(a, b, c; d) =
G′(d)/4, we have

g(a, b, c; d) = −d3 + (a2 + b2 + c2)d + 2abc. (21)
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Dividing a (convex) cyclic heptagon {a1, a2, a3, a4, a5, a6} by a diagonal d into quadrilaterals
{a1, a2, a3, d} and {a4, a5, a6, d}, and letting the area of each be S 1 and S 2, respectively, we have,
according to Svrtan [11],

S 2

S 1
= −g(a4, a5, a6; d)

g(a1, a2, a3; d)
, (22)

which has a more compact form than S 2
2/S

2
1 obtained by Eq. (20).

We note that Eq. (20) contains a triangle case (for example, let a = 0), and Eq. (22) also holds
for the division of a cyclic pentagon.

4.2.2 Application to the division of a cyclic heptagon

We consider a given cyclic heptagon {a1, a2, a3, a4, a5, a6, a7}with area S and circumradius R that is
divided by diagonals d1, d2 into a quadrilateral {a1, a2, a3, d1}, a triangle {d1, d2, a7}, and a quadri-
lateral {a4, a5, a6, d2}. If we let the area of each be S 1, S 2, and S 3, respectively, then we have
S = S 1 + S 2 + S 3.

Applying Eq. (22), we abbreviate each rational expression as follows:

S 2

S 1
= − g(a7, d2, 0; d1)

g(a1, a2, a3; d1)
= −α

β
,

S 2

S 3
= − g(a7, d1, 0; d2)

g(a4, a5, a6; d2)
= −γ

δ
. (23)

If we substitute S 1 = −
β

α
S 2 and S 3 = −

δ

γ
S 2 into S = S 1 + S 2 + S 3, then we have

S =
(
− β
α

)
S 2 + S 2 +

(
− δ
γ

)
S 2. (24)

Multiplying by 4R on both sides and letting z = 4S R, we have

z =
(
− β
α
+ 1 − δ

γ

)
4S 2R. (25)

Since we have 4S 2R = d1d2a7 from Eq. (2), clearing the denominators, we obtain

αγ · z = (−βγ + αγ − αδ) d1d2a7. (26)

Moreover, we have d1 | α and d2 | γ, and dividing both sides by d1d2, we obtain

f0(ai, d1, d2, z) =

(
a4

7 −
(
d2

1 − d2
2

)2
)
· z + (βγ − αγ + αδ) a7

(α, β, γ, δ ∈ Z[a1, a2, a3, a4, a5, a6, a7, d1, d2]) .
(27)

This polynomial equation is linear with z(= 4S R) for a cyclic heptagon and it has only 31 terms in
the expanded form. In addition, the polynomial f0 has degree 4 both in d1 and d2.

4.2.3 Elimination of diagonals d1, d2

In order to eliminate d1, d2 from f0(ai, d1, d2, z) in Eq. (27), we need two independent polynomials
in Z[ai, d1, d2]. Applying the circumradius formula (n = 3, 4) to each part, we have the following
three polynomials:

f1(a1, a2, a3, d1,R) =
(
a4

1 + a4
2 + a4

3 + d4
1 + · · ·

)
R2 +

(
a2

1a2
2a2

3 + a2
1a2

2d2
1 + a2

1a2
3d2

1 + a2
2a2

3d2
1 + · · ·

)
,

f2(a7, d1, d2,R) =
(
a4

7 + d4
1 + d4

2 − 2a2
7d2

1 − 2a2
7d2

2 − 2d2
1d2

2

)
R2 + d2

1d2
2a2

7,

f3(a4, a5, a6, d2,R) =
(
a4

4 + a4
5 + a4

6 + d4
2 + · · ·

)
R2 +

(
a2

4a2
5a2

6 + a2
4a2

5d2
2 + a2

4a2
6d2

2 + a2
5a2

6d2
2 + · · ·

)
.

(28)



letter-moritsugu.tex : 2022/9/27 16:0

Bulletin of JSSACVol. 28, No. 1, 2022 9

First, we eliminate R2 by the resultant as follows:

h1(a1, . . . , a6, d1, d2) := ResR2 ( f1, f3) (176 terms, degd1
h1 = 4, degd2

h1 = 4),
h2(a4, a5, a6, a7, d1, d2) := ResR2 ( f2, f3) (52 terms, degd1

h2 = 4, degd2
h2 = 7).

(29)

Next, we eliminate d2 for {h1, h2} and {h1, f0}, remove the content part if it exists, and we have

u1(ai, d1) := PrimitivePart(Resd2 (h1, h2), d1) (1, 060, 738 terms degd1
u1 = 38),

u2(ai, d1, z) := Resd2 (h1, f0) (2, 404, 502 terms degd1
u2 = 28, degz u2 = 4).

(30)

Unfortunately, eliminating d1 from {u1, u2} is not realistic, because of their sizes. Speculating
under the numerical substitution of ai := pi with random primes, we should have the following
factorization:

v(ai, z) := Resd1 (u1, u2)
=

(
z38 + ▽z36 + · · ·

) (
△z38 + △z37 + · · ·

) (
□z38 + □z37 + · · ·

) (
^z38 + ^z37 + · · ·

)
.

(31)
Here, w(ai, z) = z38 +▽z36 + · · · is the polynomial in Z[a1, . . . , a7][z] with 45,728,577 terms, which
is the expanded form of φ7(z) ∈ Z[s1, . . . , s6,

√
s7][z] in Eq. (15). Therefore, we apply a numerical

interpolation method to Eq. (31), instead of symbolic computation of the resultant.

5 Numerical interpolation method
In computing the circumradius formula for cyclic octagons, the author [6] used a numerical in-
terpolation method together with resultant computation. In this study, we apply similar numerical
algorithms to the case of the integrated formulae for cyclic heptagons.

5.1 Analysis of the distribution of total degrees
We define the total degree of a power product in a2

i ’s as follows:

t-deg
(
a2k1

1 a2k2
2 · · · a

2kn
n

)
:= k1 + k2 + · · · + kn. (32)

Since elementary symmetric polynomials s1 = a2
1 + · · · + a2

n, s2 = a2
1a2

2 + · · · , . . . , sn = a2
1a2

2 · · · a2
n

are homogeneous, with each having degree i (i = 1, . . . , n), we have

t-deg
(
sk1

1 sk2
2 · · · s

kn
n

)
= k1 + 2k2 + · · · + nkn. (33)

Exceptionally, we define t-deg(
√

s7) = 7/2, where
√

s7 = a1a2 · · · a7.
By analogy with the cases of the area formula and circumradius formula, we can speculate the

distribution of total degrees in the integrated formulae, as shown (in parentheses) in Table 1.
Next, we search for all the 7-tuples of integers (e1, . . . , e6, e7) so that e1+2e2+· · ·+6e6+3.5e7 =

d (d = 1.5, 3, . . . , 55.5) is satisfied. We let the numbers of found 7-tuples be Nν (ν = 37, . . . , 1),
which are shown in the “#candidates” column in Table 2.
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Degree in main variable 38 37 36 · · · · · · 2 1 0

Area (x = (4S )2) 0 2 4 · · · · · · 72 74 76
Circumradius (y = R2) 32 33 34 · · · · · · 68 69 70
Integrated (z = 4S R) 0 (1.5) (3) · · · · · · (54.0) (55.5) 57.0
Integrated (Z = (4S R)2) 0 (3) (6) · · · · · · (108) (111) 114

Table 1: Total degree in each coefficient for cyclic heptagon formulae

5.2 Determination of coefficients
We apply the following steps for each ν (= 36, . . . , 1) to compute the coefficients with total degree
dν(= 3, . . . , 55.5) in Table 1 by numerical interpolation. It is obvious that N37 = 0 for d37 = 1.5
because e1 + 2e2 + · · · + 6e6 + 3.5e7 = 1.5 has no non-negative integer solution.

(1) We generate Nν monomials mk = s
e(k)

1
1 · · · s

e(k)
6

6
√

s7
e(k)

7 (k = 1, . . . ,Nν).
(2) We let f (a1, . . . , a7) = c1m1 + · · · + cNν

mNν
using indeterminate coefficients c1, . . . , cNν

.
(3) We choose a set of random prime numbers (p1, . . . , p7) and substitute them into f (ai). On the

other hand, we compute w(pi, z) according to Eq. (31), and extract the coefficient tν of zν. Then,
we have a linear equation over the integers f (pi) = tν with indeterminates c1, . . . , cNν

.
(4) If we choose “linearly independent” Nν sets of 7-tuples, we have a system of linear equations

over the integers Ac = t. Solving this equation, we obtain the coefficients c = (c1, . . . , cNν
)T .

5.3 Devices for improvement of efficiency
In the actual implementation, we applied the following techniques to improve efficiency.

(1) First, we searched all the candidate monomials for d = 1.5, 3, . . . , 55.5, and obtained the num-
bers shown in the “#candidates” column in Table 2. That is, we assumed first of all that the
maximum number of Nν was 26,226 for ν = 2 (the coefficient of z2).

(2) Next, in order to obtain “linearly independent” evaluation points, we generated the sequence of
prime numbers

(a1, a2, . . . , a7) = (101, 103, . . . , 131), (103, 107, . . . , 137), . . . ,

and considered heptagons with side length of these prime numbers. We computed 26,226
definition polynomials w(pi, z), using the resultant and factorization shown in Eq. (31). We
saved all of these polynomials w1(p1, . . . , p7, z), . . . ,w26,226(p26,226, . . . , p26,232, z), and used as
many as needed for computing each coefficient of zν.

(3) Solving a linear equation Ac = t over Z directly with a large matrix size such as 26,226 is
almost impossible. Instead, we solved the equation Ac = t over Zp and computed the solution,
such as

c = [. . . , ⋆, 0, ⋆, . . . , ⋆, 0, 0, . . .]T (mod p).

Then, we extracted the non-zero elements (⋆’s) and the matrix size was reduced, for example,
to 664 in the case of z2. Even though we confirmed that A mod p is regular, we note that this
step is probabilistic.

(4) Finally, we solved the equation with reduced size A′c′ = t′ over Z, and checked the solution
by substitution into Ac = t over Z. Eventually, the maximum size of A′ was 2,504 for the
coefficient of z10, as shown in the “#terms of φ7” column in Table 2.
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6 Concluding remarks and extension to cyclic octagons
In this study, we succeeded in computing the integrated circumradius and area formula for cyclic
heptagons φ7(z) in Eq. (15) by numerical interpolation. In order to convert the polynomial equation
φ7(z) = |z|38 −8s3|z|36 + · · · = 0 into the equation in Z

(
= z2 = (4S R)2

)
, we separate it into the terms

with even degrees and odd degrees, as follows:

|z|
(
B35|z|34 + · · · + B1

)
= |z|38 − s3|z|36 + · · · + B0. (34)

Squaring both sides and substituting z2 = Z, we obtain the other polynomial ψ7(Z) in Eq. (15).
In these processes, we needed about 12.5 days of CPU time in total for computing Eq. (31) for

26,226 patterns of heptagons in our environment: Maple 2017 on Win64, Xeon (2.93 GHz) × 2,
192 GB RAM. In contrast, it took about 3.9 days of CPU time in total to solve all the systems of
linear equations for the undetermined variables.

The number of terms of φ7(z), 31,590, is identical to that reported by Svrtan [11]. Since Svrtan’s
elimination algorithm is unknown, our results correspond to the validation of preceding studies, and
we believe it significant to have clarified our algorithm and its cost concretely.

The next goal should be the octagon formula ψ(±)
8 (Z), which satisfies ψ7(Z) = ψ(±)

8 (Z)|ε=0. We
have applied similar methods of numerical interpolation, but the latest result is

ψ(+)
8 (Z) = Z38 − 16s3Z37 + D36Z36 + · · · + D18Z18 +

(
D17Z17 + · · · + D1Z

)
+ D0,

Di ∈ [s1, . . . , s7, ε
√

s8] (ε = 1).
(35)

The coefficient D18 has 77,131 terms, which is the largest among those already computed. Excep-
tionally, the constant term D0 is computed by an analogous process to that of Eq. (19), and it has
554,173 terms. In contrast, the terms in the parentheses D17, . . . ,D1 are unable to be computed at
present.

Since the matrix size for D17 is 125, 054 and this increases to 4, 116, 544 for D1, it is impossible
to compute these coefficients in the present computational environment described above. It seems
that we need to find another principle for elimination algorithms.
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deg in z t-deg #candidates #terms of φ7 deg in Z t-deg #terms of ψ7

0 57.0 (not used) 295 0 114 5,120
1 55.5 21,873 465 1 111 9,577
2 54.0 26,226 664 2 108 15,564
3 52.5 16,475 926 3 105 23,239
4 51.0 19,928 1,230 4 102 32,597
5 49.5 12,241 1,551 5 99 43,316
6 48.0 14,950 1,814 6 96 54,102
7 46.5 8,946 2,075 7 93 64,045
8 45.0 11,044 2,237 8 90 72,291
9 43.5 6,430 2,392 9 87 78,269

10 42.0 8,033 2,504 10 84 81,969
11 40.5 4,526 2,163 11 81 77,990
12 39.0 5,731 2,258 12 78 71,316
13 37.5 3,120 1,758 13 75 63,500
14 36.0 4,011 1,845 14 72 55,553
15 34.5 2,093 1,309 15 69 47,257
16 33.0 2,738 1,376 16 66 39,733
17 31.5 1,367 897 17 63 32,591
18 30.0 1,824 969 18 60 26,301
19 28.5 860 591 19 57 20,757
20 27.0 1,175 632 20 54 16,064
21 25.5 522 359 21 51 12,152
22 24.0 733 389 22 48 9,063
23 22.5 300 211 23 45 6,636
24 21.0 436 226 24 42 4,776
25 19.5 164 116 25 39 3,366
26 18.0 248 123 26 36 2,328
27 16.5 82 60 27 33 1,561
28 15.0 131 62 28 30 1,025
29 13.5 38 28 29 27 645
30 12.0 65 30 30 24 393
31 10.5 15 11 31 21 227
32 9.0 28 12 32 18 124
33 7.5 5 5 33 15 63
34 6.0 11 4 34 12 30
35 4.5 1 1 35 9 12
36 3.0 3 1 36 6 4
37 1.5 0 0 37 3 1
38 0.0 1 1 38 0 1

Table 2: Each coefficient in the heptagon formulae φ7(si; z) and ψ7(si; Z)
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